5G工业互联阶段二:5G产线工控网

5G深入核心生产环节的第二个阶段,主要是实现产线内部通信5G化。以工控5G化为主,并综合考虑数采、安全通信等。大致示意如下:

5G工业互联阶段二:5G产线工控网_第1张图片

 

工艺部件工控通信5G化:

如上图所述,以产线主PLC为中心,大致分为主PLC到产线内机器人控制器之间的C2C通信、主PLC到产线设备IO的C2IO通信、机器人控制器到机器人所属设备IO的C2IO通信三大类。此外,不同产线PLC之间,也往往存在C2C的通信(图中未画出)。上述各种通信关系的5G化改造,主要集中在工业以太通信的端点上。分为受控设备和控制器侧两大类。绝大部分端点在受控设备侧。主要形态为独立的IO模块、以及内置IO模块的设备(主要为阀岛)。

由于独立IO模块、阀岛的周边空间有限、存在震动、往往需要随同设备移动等外部影响,一般应采用内置5G模组方式进行改造(除放置在机柜内的设备外)。对于控制器侧,则是数量相对较少的PLC、机器人控制器。该类设备一般都置于控制机柜内,无内置5G模组强烈诉求。因此,采用外接独立5G网关设备即可满足要求。产线内多种工业以太通信连接5G化改造的范围,需要根据前述柔性化生产的诉求决定,可大致区分为两大场景:

全柔性改造,快速产线重组:产线内部设备间工控通信全部5G化,满足产线快速重组的需求。

无线改造,降低线损。产线内部,仅将具备移动的设备连接5G化。

对于第二类场景,实际部署改造时,可能会因为组网相关性,演变为全部连接无线化,以获得简化组网的效益。例如,在分析产线内部有线组网关系后,如果发现需要5G化的设备比例较高,则可以考虑将该产线全部5G化,去除产线内部的有线组网设备。

数采通信5G化:

当前,不同的生产线在数采上发展程度与复杂度不同。有的产线,仅仅由产线PLC、机器人提供向上数据采集,数据内容有限。越来越多的工厂,开始关注从设备采集更多的数据,以做到预测性维护、甚至是实时工艺优化。此时,则需要考虑如何在产线内部的众多设备上构筑数据连接,以采集到更多数据源。目前,也有一些企业已经考虑借助5G完成,降低组网施工复杂度。结合本阶段的工业控制5G化,在同一个生产设备上,未来可利用同一个5G终端,既实现工控通信,也可以扩展数据采集。大大简化网络部署。

安全通信5G化:

首先需要从安全性的影响来决定安全通信部件的连接是否可以5G化。功能安全部件是否5G化,需要考虑两个影响。首先,要避免“安全保护遗漏”导致的安全事故。目前的安全通信协议,为了应对通信层的不稳定,在协议机制层可避免由于网络不稳定而导致安全保护遗漏。其次,要减少“安全保护过敏”导致的假保护动作,从而降低生产效率。当网络确定性不足时,可能因为安全协议的自保护设计,导致误动作,从而导致生产停机等。此外,需要通过功能安全部件的组网与普通工艺生产设备(驱动器、传感器)的组网关系,进一步决定是否以及如何5G化。

优化匹配产线的需求与5G网络能力的建议:

工艺工控通信5G化、安全通信5G化、以及数采与工控UE合一,都存在对于5G网络确定性能力的要求。在设计5G化产线时,不应过度追求最高的确定性时延性能指标,导致难以部署。产线的需求与5G网络需求的最佳匹配,应考虑如下几个关键因素:

1、合理配置工控通信的PLC的更新周期(CT,CycleTime)与IO扫描看门狗(WDT,watchdogtimer)。在有线网络中,该类参数设计一般设置较为严苛。但是实际在多数场景中,CT周期增加几ms,对于整体产线的节拍影响较为微小。可考虑合理的CT和WDT配置,以更好适配5G网络。

2、合理设置确定性并发容量。结合5G网络能力发展节奏,根据上述的产线工艺通信、数采、安全通信是否5G化以及如何5G化的原则,合理设置5G化的范围。

3、终端设备5G化产业具备与成本。主要的改造点在于受控设备侧大量的独立模块与内置IO模块的阀岛,需要内置适配5G确定性能力所需的5G网络模组。

以整个车间产线网全5G化为前提,参考典型行业的在确定性时延和并发密度(容量)方面需求(见AII《5G/5G-A超可靠低时延通信工业场景需求白皮书(征求意见稿)》,基于当前的技术和产业发展进度预测,大致节奏划分如下。具体项目,应结合上述产线5G化因素具体分析而确定。

5G工业互联阶段二:5G产线工控网_第2张图片

 

源自:《5G工业互联赋能5G全连接工厂技术白皮书》

忽米——让工业更有智慧

你可能感兴趣的:(5G)