RuntimeError: CUDA out of memory
报错代码:
vgg16_model.eval()
with torch.no_grad():
for j, data in enumerate(valid_loader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
bs, ncrops, c, h, w = inputs.size()
outputs = vgg16_model(inputs.view(-1, c, h, w))
outputs_avg = outputs.view(bs, ncrops, -1).mean(1)
loss = criterion(outputs_avg, labels)
_, predicted = torch.max(outputs_avg.data, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).squeeze().cpu().sum().numpy()
loss_val += loss.item()
loss_val_mean = loss_val/len(valid_loader)
valid_curve.append(loss_val_mean)
print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val_mean, correct_val / total_val))
vgg16_model.train()
修改后的代码:with torch.no_grad():
'''
加 with torch.no_grad,来表明此处不需要进行梯度计算。因为我在验证集加了model.eval所以好像pytorch并不会自动进行val的梯度的清理。
'''
if (epoch+1) % val_interval == 0:
correct_val = 0.
total_val = 0.
loss_val = 0.
vgg16_model.eval()
with torch.no_grad():
for j, data in enumerate(valid_loader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
bs, ncrops, c, h, w = inputs.size()
outputs = vgg16_model(inputs.view(-1, c, h, w))
outputs_avg = outputs.view(bs, ncrops, -1).mean(1)
loss = criterion(outputs_avg, labels)
_, predicted = torch.max(outputs_avg.data, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).squeeze().cpu().sum().numpy()
loss_val += loss.item()
loss_val_mean = loss_val/len(valid_loader)
valid_curve.append(loss_val_mean)
print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch, MAX_EPOCH, j+1, len(valid_loader), loss_val_mean, correct_val / total_val))
vgg16_model.train()
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cuda\Loss.cu:247: block: [0,0,0], thread: [1,0,0] Assertiont >= 0 && t < n_classes
failed.
修改前代码:
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss.backward()
# update weights
optimizer.step()
修改后代码:加上loss = loss.requires_grad_()
# backward
optimizer.zero_grad()
loss = criterion(outputs, labels)
loss = loss.requires_grad_()
loss.backward()