import os
from pyltp import Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller
# pip install pyltp -i https://pypi.tuna.tsinghua.edu.cn/simple 可以先下载好whl文件
#LTP语言平台:http://ltp.ai/index.html
#咱们使用的工具包,pyltp:https://pyltp.readthedocs.io/zh_CN/latest/api.html
#LTP附录:https://ltp.readthedocs.io/zh_CN/latest/appendix.html#id3
#安装方法:https://github.com/HIT-SCIR/pyltp
class LtpParser:
def __init__(self):
LTP_DIR = "./ltp_data_v3.4.0"
self.segmentor = Segmentor() # 分词
self.segmentor.load(os.path.join(LTP_DIR, "cws.model"))
self.postagger = Postagger() # 词性标注
self.postagger.load(os.path.join(LTP_DIR, "pos.model"))
self.parser = Parser() # 句法依存分析
self.parser.load(os.path.join(LTP_DIR, "parser.model"))
self.recognizer = NamedEntityRecognizer() # 命名实体识别
self.recognizer.load(os.path.join(LTP_DIR, "ner.model"))
self.labeller = SementicRoleLabeller() # 语义角色标注
self.labeller.load(os.path.join(LTP_DIR, 'pisrl_win.model'))
# 语义角色标注
def format_labelrole(self, words, postags):
print("分词----> words= {0}----len(words) = {1}".format(words, len(words)))
print("词性标注----> postags= {0}----len(postags) = {1}".format(postags, len(postags)))
arcs = self.parser.parse(words, postags) # 建立依存句法分析树
roles = self.labeller.label(words, postags, arcs)
print("len(roles) = {0}----roles = {1}".format(len(roles), roles))
roles_dict = {}
for role in roles:
print("谓语所在索引:role.index = {0}".format(role.index))
roles_dict[role.index] = {arg.name:[arg.name,arg.range.start, arg.range.end] for arg in role.arguments}
# {6: {'A0': ['A0', 0, 2], 'TMP': ['TMP', 3, 3], 'LOC': ['LOC', 4, 5], 'A1': ['A1', 8, 8]}}
# 6:表示谓语(发表)所在序号;
# A0:表示“施事者、主体、触发者”,0,2分别表示A0所在的起始索引、终止索引(此句中有2个A0,分别是“奥巴马”、“克林顿”,索引范围是是0-2)
# TMP:表示“时间”,3, 3分别表示TMP所在的起始索引、终止索引(“昨晚”)
# LOC:表示“地点”,4, 5分别表示LOC所在的起始索引、终止索引(“在”,“白宫”)
# A1:表示“受事者”,8, 8分别表示LOC所在的起始索引、终止索引(“演说”)
print("语义角色标注---->roles_dict = {0}".format(roles_dict))
return roles_dict
'''parser主函数'''
def parser_main(self, sentence):
# 分词
words = list(self.segmentor.segment(sentence))
# 词性标注
postags = list(self.postagger.postag(words))
# 语义角色标注
roles_dict = self.format_labelrole(words, postags)
return words, postags, roles_dict
if __name__ == '__main__':
parse = LtpParser()
sentence = '奥巴马与克林顿昨晚在白宫发表了演说'
words, postags, roles_dict = parse.parser_main(sentence)
输出结果:
分词----> words= ['奥巴马', '与', '克林顿', '昨晚', '在', '白宫', '发表', '了', '演说']----len(words) = 9
词性标注----> postags= ['nh', 'p', 'nh', 'nt', 'p', 'n', 'v', 'u', 'v']----len(postags) = 9
len(roles) = 1----roles = <pyltp.SementicRoles object at 0x000002170D3CC210>
谓语所在索引:role.index = 6
语义角色标注---->roles_dict = {6: {'A0': ['A0', 0, 2], 'TMP': ['TMP', 3, 3], 'LOC': ['LOC', 4, 5], 'A1': ['A1', 8, 8]}}
Process finished with exit code 0
{6: {'A0': ['A0', 0, 2], 'TMP': ['TMP', 3, 3], 'LOC': ['LOC', 4, 5], 'A1': ['A1', 8, 8]}}
import os
import re
from pyltp import Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller
# pip install pyltp -i https://pypi.tuna.tsinghua.edu.cn/simple 可以先下载好whl文件
#LTP语言平台:http://ltp.ai/index.html
#咱们使用的工具包,pyltp:https://pyltp.readthedocs.io/zh_CN/latest/api.html
#LTP附录:https://ltp.readthedocs.io/zh_CN/latest/appendix.html#id3
#安装方法:https://github.com/HIT-SCIR/pyltp
class LtpParser:
def __init__(self):
LTP_DIR = "./ltp_data_v3.4.0"
self.segmentor = Segmentor() # 分词
self.segmentor.load(os.path.join(LTP_DIR, "cws.model"))
self.postagger = Postagger() # 词性标注
self.postagger.load(os.path.join(LTP_DIR, "pos.model"))
self.parser = Parser() # 句法依存分析
self.parser.load(os.path.join(LTP_DIR, "parser.model"))
self.recognizer = NamedEntityRecognizer() # 命名实体识别
self.recognizer.load(os.path.join(LTP_DIR, "ner.model"))
self.labeller = SementicRoleLabeller() # 语义角色标注
self.labeller.load(os.path.join(LTP_DIR, 'pisrl_win.model'))
# 依存句法分析【为句子中的每个词语维护一个保存句法依存儿子节点的字典】
def build_parse_child_dict(self, words, postags): # words:分词后的结果;postags:词性标注后的结果;arcs:依存句法分析树
print("-" * 50, "依存句法分析:开始", "-" * 50)
child_dict_list = []
format_parse_list = []
arcs = self.parser.parse(words, postags) # 建立依存句法分析树
print("分词列表:words = {}".format(words))
print("词性分析:postags = {}".format(postags))
rely_ids = [arc.head - 1 for arc in arcs] # 提取该句话的每一个词的依存父节点id【0为ROOT,词语从1开始编号】: [2, 0, 2, 5, 8, 8, 6, 3] - 1 = [1, -1, 1, 4, 7, 7, 5, 2]【此时 -1 表示ROOT】
print("各个词语所依赖的父节点:rely_ids = {0}".format(rely_ids))
heads = ['Root' if rely_id == -1 else words[rely_id] for rely_id in rely_ids] # 匹配依存父节点词语
print("各个词语所依赖的父节点词语 = {0}".format(heads))
relations = [arc.relation for arc in arcs] # 提取依存关系
print("各个词语与所依赖的父节点的依赖关系 = {0}".format(relations))
for word_index in range(len(words)):
print("\nword_index = {0}----word = {1}".format(word_index, words[word_index]))
child_dict = dict() # 每个词语与所有其他词语的关系字典
for arc_index in range(len(arcs)): # arc_index==0时表示ROOT【还没进入“我想听一首迪哥的歌”语句】,arc_index==1时表示“我”
# 当“依存句法分析树”遍历,遇到当前词语时,说明当前词语在依存句法分析树中与其他词语有依存关系
if word_index == rely_ids[arc_index]: # arcs[arc_index].head 表示arcs[arc_index]所代表的词语依存弧的父结点的索引。 ROOT 节点的索引是 0 ,第一个词开始的索引依次为1,2,3,···【“我”的索引为1】arc. relation 表示依存弧的关系。
print("word_index = {0}----arc_index = {1}----rely_ids[arc_index] = {2}----relations[arc_index] = {3}".format(word_index, arc_index, rely_ids[arc_index], relations[arc_index]))
if relations[arc_index] in child_dict: # arcs[arc_index].relation表示arcs[arc_index]所代表的词语与父节点的依存关系(语法关系)
child_dict[relations[arc_index]].append(arc_index) # 添加 child_dict = {'ATT': [4]}----> child_dict = {'ATT': [4, 5]}
else:
child_dict[relations[arc_index]] = [] # 新建
child_dict[relations[arc_index]].append(arc_index) # child_dict = {[]}----> child_dict = {'ATT': [4]}
print("child_dict = {0}".format(child_dict))
child_dict_list.append(child_dict)# 每个词对应的依存关系父节点和其关系
print("child_dict_list = {0}".format(child_dict_list))
# 整合每个词语的句法依存关系
for i in range(len(words)):
a = [relations[i], words[i], i, postags[i], heads[i], rely_ids[i]-1, postags[rely_ids[i]-1]]
format_parse_list.append(a)
print("整合每个词语的句法依存关系---->format_parse_list = ", format_parse_list)
print("-" * 50, "依存句法分析:结束", "-" * 50)
return child_dict_list, format_parse_list
# 语义角色标注
def format_labelrole(self, words, postags):
print("-"*50, "语义角色标注:开始", "-"*50)
print("分词----> words= {0}----len(words) = {1}".format(words, len(words)))
print("词性标注----> postags= {0}----len(postags) = {1}".format(postags, len(postags)))
arcs = self.parser.parse(words, postags) # 建立依存句法分析树
roles = self.labeller.label(words, postags, arcs)
print("len(roles) = {0}----roles = {1}".format(len(roles), roles))
roles_dict = {}
for role in roles:
print("谓语所在索引:role.index = {0}".format(role.index))
roles_dict[role.index] = {arg.name:[arg.name,arg.range.start, arg.range.end] for arg in role.arguments}
# {6: {'A0': ['A0', 0, 2], 'TMP': ['TMP', 3, 3], 'LOC': ['LOC', 4, 5], 'A1': ['A1', 8, 8]}}
# 6:表示谓语(发表)所在序号;
# A0:表示“施事者、主体、触发者”,0,2分别表示A0所在的起始索引、终止索引(此句中有2个A0,分别是“奥巴马”、“克林顿”,索引范围是是0-2)
# TMP:表示“时间”,3, 3分别表示TMP所在的起始索引、终止索引(“昨晚”)
# LOC:表示“地点”,4, 5分别表示LOC所在的起始索引、终止索引(“在”,“白宫”)
# A1:表示“受事者”,8, 8分别表示LOC所在的起始索引、终止索引(“演说”)
print("语义角色标注---->roles_dict = {0}".format(roles_dict))
print("-" * 50, "语义角色标注:结束", "-" * 50)
return roles_dict
# parser主函数
def parser_main(self, sentence):
# 分词
words = list(self.segmentor.segment(sentence))
# 词性标注
postags = list(self.postagger.postag(words))
# 依存句法分析
child_dict_list, format_parse_list = self.build_parse_child_dict(words, postags)
# 语义角色标注
roles_dict = self.format_labelrole(words, postags)
return words, postags, child_dict_list, format_parse_list, roles_dict
# 关系抽取类
class TripleExtractor:
def __init__(self):
self.parser = LtpParser()
'''文章分句处理, 切分长句,冒号,分号,感叹号等做切分标识'''
def split_sents(self, content):
return [sentence for sentence in re.split(r'[??!!。;;::\n\r]', content) if sentence]
'''利用语义角色标注,直接获取主谓宾三元组,基于A0,A1,A2'''
def ruler1(self, words, postags, roles_dict, role_index):
v = words[role_index]
role_info = roles_dict[role_index]
if 'A0' in role_info.keys() and 'A1' in role_info.keys():
s = ''.join([words[word_index] for word_index in range(role_info['A0'][1], role_info['A0'][2]+1) if
postags[word_index][0] not in ['w', 'u', 'x'] and words[word_index]])
o = ''.join([words[word_index] for word_index in range(role_info['A1'][1], role_info['A1'][2]+1) if
postags[word_index][0] not in ['w', 'u', 'x'] and words[word_index]])
if s and o:
return '1', [s, v, o]
return '4', []
'''三元组抽取主函数'''
def ruler2(self, words, postags, child_dict_list, format_parse_list, roles_dict):
svos = []
for index in range(len(postags)):
tmp = 1
# 先借助语义角色标注的结果,进行三元组抽取
if index in roles_dict:
flag, triple = self.ruler1(words, postags, roles_dict, index)
if flag == '1':
svos.append(triple)
tmp = 0
if tmp == 1:
# 如果语义角色标记为空,则使用依存句法进行抽取
# if postags[index] == 'v':
if postags[index]:
# 抽取以谓词为中心的事实三元组
child_dict = child_dict_list[index]
# 主谓宾
if 'SBV' in child_dict and 'VOB' in child_dict:
r = words[index]
e1 = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0])
e2 = self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
svos.append([e1, r, e2])
# 定语后置,动宾关系
relation = format_parse_list[index][0]
head = format_parse_list[index][2]
if relation == 'ATT':
if 'VOB' in child_dict:
e1 = self.complete_e(words, postags, child_dict_list, head - 1)
r = words[index]
e2 = self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
temp_string = r + e2
if temp_string == e1[:len(temp_string)]:
e1 = e1[len(temp_string):]
if temp_string not in e1:
svos.append([e1, r, e2])
# 含有介宾关系的主谓动补关系
if 'SBV' in child_dict and 'CMP' in child_dict:
e1 = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0])
cmp_index = child_dict['CMP'][0]
r = words[index] + words[cmp_index]
if 'POB' in child_dict_list[cmp_index]:
e2 = self.complete_e(words, postags, child_dict_list, child_dict_list[cmp_index]['POB'][0])
svos.append([e1, r, e2])
return svos
'''对找出的主语或者宾语进行扩展:【定中关系 ATT 红苹果 (红 <– 苹果)】'''
def complete_e(self, words, postags, child_dict_list, word_index):
child_dict = child_dict_list[word_index]
prefix = ''
if 'ATT' in child_dict:
for i in range(len(child_dict['ATT'])):
prefix += self.complete_e(words, postags, child_dict_list, child_dict['ATT'][i])
postfix = ''
if postags[word_index] == 'v':
if 'VOB' in child_dict:
postfix += self.complete_e(words, postags, child_dict_list, child_dict['VOB'][0])
if 'SBV' in child_dict:
prefix = self.complete_e(words, postags, child_dict_list, child_dict['SBV'][0]) + prefix
return prefix + words[word_index] + postfix
'''程序主控函数'''
def triples_main(self, text):
sentences = self.split_sents(text)
svos = []
for index, sentence in enumerate(sentences):
print("="*50, "第{}句:开始".format(index + 1), "="*50)
# words: 分词; postags: 词性标注; child_dict_list: 依存句法分析; roles_dict: 语义角色标注
words, postags, child_dict_list, format_parse_list, roles_dict = self.parser.parser_main(sentence)
svo = self.ruler2(words, postags, child_dict_list, format_parse_list, roles_dict)
print("svo = {0}".format(svo))
print("=" * 50, "第{}句:结束".format(index + 1), "=" * 50)
svos += svo
return svos
# 关系抽取
def run_extractor(text):
extractor = TripleExtractor()
svos = extractor.triples_main(text)
return svos
if __name__ == '__main__':
# 关系抽取
# text = '奥巴马与克林顿昨晚在白宫发表了演说'
text = '我购买了一件玩具,孩子非常喜欢这个玩具,但是质量不太好。希望商家能够保障商品质量,不要再出现类似问题。'
svos = run_extractor(text)
print("关系抽取结果:svos = {0}".format(svos))
打印结果:
================================================== 第1句:开始 ==================================================
-------------------------------------------------- 依存句法分析:开始 --------------------------------------------------
分词列表:words = ['我', '购买', '了', '一', '件', '玩具', ',', '孩子', '非常', '喜欢', '这个', '玩具', ',', '但是', '质量', '不', '太', '好']
词性分析:postags = ['r', 'v', 'u', 'm', 'q', 'n', 'wp', 'n', 'd', 'v', 'r', 'n', 'wp', 'c', 'n', 'd', 'd', 'a']
各个词语所依赖的父节点:rely_ids = [1, -1, 1, 4, 5, 1, 1, 9, 9, 1, 11, 9, 9, 17, 17, 17, 17, 9]
各个词语所依赖的父节点词语 = ['购买', 'Root', '购买', '件', '玩具', '购买', '购买', '喜欢', '喜欢', '购买', '玩具', '喜欢', '喜欢', '好', '好', '好', '好', '喜欢']
各个词语与所依赖的父节点的依赖关系 = ['SBV', 'HED', 'RAD', 'ATT', 'ATT', 'VOB', 'WP', 'SBV', 'ADV', 'COO', 'ATT', 'VOB', 'WP', 'ADV', 'SBV', 'ADV', 'ADV', 'COO']
word_index = 0----word = 我
child_dict_list = [{}]
word_index = 1----word = 购买
word_index = 1----arc_index = 0----rely_ids[arc_index] = 1----relations[arc_index] = SBV
child_dict = {'SBV': [0]}
word_index = 1----arc_index = 2----rely_ids[arc_index] = 1----relations[arc_index] = RAD
child_dict = {'SBV': [0], 'RAD': [2]}
word_index = 1----arc_index = 5----rely_ids[arc_index] = 1----relations[arc_index] = VOB
child_dict = {'SBV': [0], 'RAD': [2], 'VOB': [5]}
word_index = 1----arc_index = 6----rely_ids[arc_index] = 1----relations[arc_index] = WP
child_dict = {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6]}
word_index = 1----arc_index = 9----rely_ids[arc_index] = 1----relations[arc_index] = COO
child_dict = {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}]
word_index = 2----word = 了
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}]
word_index = 3----word = 一
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}]
word_index = 4----word = 件
word_index = 4----arc_index = 3----rely_ids[arc_index] = 4----relations[arc_index] = ATT
child_dict = {'ATT': [3]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}]
word_index = 5----word = 玩具
word_index = 5----arc_index = 4----rely_ids[arc_index] = 5----relations[arc_index] = ATT
child_dict = {'ATT': [4]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}]
word_index = 6----word = ,
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}]
word_index = 7----word = 孩子
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}]
word_index = 8----word = 非常
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}]
word_index = 9----word = 喜欢
word_index = 9----arc_index = 7----rely_ids[arc_index] = 9----relations[arc_index] = SBV
child_dict = {'SBV': [7]}
word_index = 9----arc_index = 8----rely_ids[arc_index] = 9----relations[arc_index] = ADV
child_dict = {'SBV': [7], 'ADV': [8]}
word_index = 9----arc_index = 11----rely_ids[arc_index] = 9----relations[arc_index] = VOB
child_dict = {'SBV': [7], 'ADV': [8], 'VOB': [11]}
word_index = 9----arc_index = 12----rely_ids[arc_index] = 9----relations[arc_index] = WP
child_dict = {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12]}
word_index = 9----arc_index = 17----rely_ids[arc_index] = 9----relations[arc_index] = COO
child_dict = {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}]
word_index = 10----word = 这个
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}]
word_index = 11----word = 玩具
word_index = 11----arc_index = 10----rely_ids[arc_index] = 11----relations[arc_index] = ATT
child_dict = {'ATT': [10]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}]
word_index = 12----word = ,
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}]
word_index = 13----word = 但是
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}, {}]
word_index = 14----word = 质量
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}, {}, {}]
word_index = 15----word = 不
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}, {}, {}, {}]
word_index = 16----word = 太
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}, {}, {}, {}, {}]
word_index = 17----word = 好
word_index = 17----arc_index = 13----rely_ids[arc_index] = 17----relations[arc_index] = ADV
child_dict = {'ADV': [13]}
word_index = 17----arc_index = 14----rely_ids[arc_index] = 17----relations[arc_index] = SBV
child_dict = {'ADV': [13], 'SBV': [14]}
word_index = 17----arc_index = 15----rely_ids[arc_index] = 17----relations[arc_index] = ADV
child_dict = {'ADV': [13, 15], 'SBV': [14]}
word_index = 17----arc_index = 16----rely_ids[arc_index] = 17----relations[arc_index] = ADV
child_dict = {'ADV': [13, 15, 16], 'SBV': [14]}
child_dict_list = [{}, {'SBV': [0], 'RAD': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {}, {'ATT': [3]}, {'ATT': [4]}, {}, {}, {}, {'SBV': [7], 'ADV': [8], 'VOB': [11], 'WP': [12], 'COO': [17]}, {}, {'ATT': [10]}, {}, {}, {}, {}, {}, {'ADV': [13, 15, 16], 'SBV': [14]}]
整合每个词语的句法依存关系---->format_parse_list = [['SBV', '我', 0, 'r', '购买', 0, 'r'], ['HED', '购买', 1, 'v', 'Root', -2, 'd'], ['RAD', '了', 2, 'u', '购买', 0, 'r'], ['ATT', '一', 3, 'm', '件', 3, 'm'], ['ATT', '件', 4, 'q', '玩具', 4, 'q'], ['VOB', '玩具', 5, 'n', '购买', 0, 'r'], ['WP', ',', 6, 'wp', '购买', 0, 'r'], ['SBV', '孩子', 7, 'n', '喜欢', 8, 'd'], ['ADV', '非常', 8, 'd', '喜欢', 8, 'd'], ['COO', '喜欢', 9, 'v', '购买', 0, 'r'], ['ATT', '这个', 10, 'r', '玩具', 10, 'r'], ['VOB', '玩具', 11, 'n', '喜欢', 8, 'd'], ['WP', ',', 12, 'wp', '喜欢', 8, 'd'], ['ADV', '但是', 13, 'c', '好', 16, 'd'], ['SBV', '质量', 14, 'n', '好', 16, 'd'], ['ADV', '不', 15, 'd', '好', 16, 'd'], ['ADV', '太', 16, 'd', '好', 16, 'd'], ['COO', '好', 17, 'a', '喜欢', 8, 'd']]
-------------------------------------------------- 依存句法分析:结束 --------------------------------------------------
-------------------------------------------------- 语义角色标注:开始 --------------------------------------------------
分词----> words= ['我', '购买', '了', '一', '件', '玩具', ',', '孩子', '非常', '喜欢', '这个', '玩具', ',', '但是', '质量', '不', '太', '好']----len(words) = 18
词性标注----> postags= ['r', 'v', 'u', 'm', 'q', 'n', 'wp', 'n', 'd', 'v', 'r', 'n', 'wp', 'c', 'n', 'd', 'd', 'a']----len(postags) = 18
len(roles) = 2----roles = <pyltp.SementicRoles object at 0x0000026FF8D2E870>
谓语所在索引:role.index = 1
谓语所在索引:role.index = 17
语义角色标注---->roles_dict = {1: {'A0': ['A0', 0, 0], 'A1': ['A1', 3, 5]}, 17: {'DIS': ['DIS', 13, 13], 'A0': ['A0', 14, 14], 'ADV': ['ADV', 16, 16]}}
-------------------------------------------------- 语义角色标注:结束 --------------------------------------------------
svo = [['我', '购买', '一件玩具'], ['孩子', '喜欢', '这个玩具']]
================================================== 第1句:结束 ==================================================
================================================== 第2句:开始 ==================================================
-------------------------------------------------- 依存句法分析:开始 --------------------------------------------------
分词列表:words = ['希望', '商家', '能够', '保障', '商品', '质量', ',', '不要', '再', '出现', '类似', '问题']
词性分析:postags = ['v', 'n', 'v', 'v', 'n', 'n', 'wp', 'd', 'd', 'v', 'v', 'n']
各个词语所依赖的父节点:rely_ids = [-1, 3, 3, 0, 5, 3, 3, 9, 9, 3, 11, 9]
各个词语所依赖的父节点词语 = ['Root', '保障', '保障', '希望', '质量', '保障', '保障', '出现', '出现', '保障', '问题', '出现']
各个词语与所依赖的父节点的依赖关系 = ['HED', 'SBV', 'ADV', 'VOB', 'ATT', 'VOB', 'WP', 'ADV', 'ADV', 'COO', 'ATT', 'VOB']
word_index = 0----word = 希望
word_index = 0----arc_index = 3----rely_ids[arc_index] = 0----relations[arc_index] = VOB
child_dict = {'VOB': [3]}
child_dict_list = [{'VOB': [3]}]
word_index = 1----word = 商家
child_dict_list = [{'VOB': [3]}, {}]
word_index = 2----word = 能够
child_dict_list = [{'VOB': [3]}, {}, {}]
word_index = 3----word = 保障
word_index = 3----arc_index = 1----rely_ids[arc_index] = 3----relations[arc_index] = SBV
child_dict = {'SBV': [1]}
word_index = 3----arc_index = 2----rely_ids[arc_index] = 3----relations[arc_index] = ADV
child_dict = {'SBV': [1], 'ADV': [2]}
word_index = 3----arc_index = 5----rely_ids[arc_index] = 3----relations[arc_index] = VOB
child_dict = {'SBV': [1], 'ADV': [2], 'VOB': [5]}
word_index = 3----arc_index = 6----rely_ids[arc_index] = 3----relations[arc_index] = WP
child_dict = {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6]}
word_index = 3----arc_index = 9----rely_ids[arc_index] = 3----relations[arc_index] = COO
child_dict = {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}]
word_index = 4----word = 商品
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}]
word_index = 5----word = 质量
word_index = 5----arc_index = 4----rely_ids[arc_index] = 5----relations[arc_index] = ATT
child_dict = {'ATT': [4]}
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}]
word_index = 6----word = ,
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}]
word_index = 7----word = 不要
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}, {}]
word_index = 8----word = 再
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}, {}, {}]
word_index = 9----word = 出现
word_index = 9----arc_index = 7----rely_ids[arc_index] = 9----relations[arc_index] = ADV
child_dict = {'ADV': [7]}
word_index = 9----arc_index = 8----rely_ids[arc_index] = 9----relations[arc_index] = ADV
child_dict = {'ADV': [7, 8]}
word_index = 9----arc_index = 11----rely_ids[arc_index] = 9----relations[arc_index] = VOB
child_dict = {'ADV': [7, 8], 'VOB': [11]}
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}, {}, {}, {'ADV': [7, 8], 'VOB': [11]}]
word_index = 10----word = 类似
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}, {}, {}, {'ADV': [7, 8], 'VOB': [11]}, {}]
word_index = 11----word = 问题
word_index = 11----arc_index = 10----rely_ids[arc_index] = 11----relations[arc_index] = ATT
child_dict = {'ATT': [10]}
child_dict_list = [{'VOB': [3]}, {}, {}, {'SBV': [1], 'ADV': [2], 'VOB': [5], 'WP': [6], 'COO': [9]}, {}, {'ATT': [4]}, {}, {}, {}, {'ADV': [7, 8], 'VOB': [11]}, {}, {'ATT': [10]}]
整合每个词语的句法依存关系---->format_parse_list = [['HED', '希望', 0, 'v', 'Root', -2, 'v'], ['SBV', '商家', 1, 'n', '保障', 2, 'v'], ['ADV', '能够', 2, 'v', '保障', 2, 'v'], ['VOB', '保障', 3, 'v', '希望', -1, 'n'], ['ATT', '商品', 4, 'n', '质量', 4, 'n'], ['VOB', '质量', 5, 'n', '保障', 2, 'v'], ['WP', ',', 6, 'wp', '保障', 2, 'v'], ['ADV', '不要', 7, 'd', '出现', 8, 'd'], ['ADV', '再', 8, 'd', '出现', 8, 'd'], ['COO', '出现', 9, 'v', '保障', 2, 'v'], ['ATT', '类似', 10, 'v', '问题', 10, 'v'], ['VOB', '问题', 11, 'n', '出现', 8, 'd']]
-------------------------------------------------- 依存句法分析:结束 --------------------------------------------------
-------------------------------------------------- 语义角色标注:开始 --------------------------------------------------
分词----> words= ['希望', '商家', '能够', '保障', '商品', '质量', ',', '不要', '再', '出现', '类似', '问题']----len(words) = 12
词性标注----> postags= ['v', 'n', 'v', 'v', 'n', 'n', 'wp', 'd', 'd', 'v', 'v', 'n']----len(postags) = 12
len(roles) = 4----roles = <pyltp.SementicRoles object at 0x0000026FF8D2E870>
谓语所在索引:role.index = 0
谓语所在索引:role.index = 3
谓语所在索引:role.index = 7
谓语所在索引:role.index = 9
语义角色标注---->roles_dict = {0: {'A1': ['A1', 1, 11]}, 3: {'A0': ['A0', 1, 1], 'A1': ['A1', 4, 5]}, 7: {'A0': ['A0', 1, 1]}, 9: {'ADV': ['ADV', 8, 8], 'A1': ['A1', 10, 11]}}
-------------------------------------------------- 语义角色标注:结束 --------------------------------------------------
svo = [['商家', '保障', '商品质量']]
================================================== 第2句:结束 ==================================================
关系抽取结果:svos = [['我', '购买', '一件玩具'], ['孩子', '喜欢', '这个玩具'], ['商家', '保障', '商品质量']]
Process finished with exit code 0
通过上一步骤的关系抽取的三元组结果【A0(触发者)
、谓语词
、A1(受事者)
】就可以创建知识图谱的实体与关系。