[论文阅读] Curriculum Semi-supervised Segmentation

[论文地址] [代码] [MICCAI 19]

Abstract

本研究调查了半监督CNN分割的课程式策略,它设计了一个回归网络来学习图像级信息,如目标区域的大小。这些回归被用来有效地规范分割网络,约束未标记图像的softmax预测,使其与推断的标签分布相匹配。我们的框架基于不等式约束,可以容忍推断出的知识中的不确定性,例如,回归的区域大小。它可以用于大量的区域属性。我们评估了我们的方法在磁共振图像(MRI)中的左心室分割,并将其与标准的基于建议的半监督策略相比较。我们的方法取得了有竞争力的结果,以更有效的方式利用了未标记的数据,并接近完全监督的性能。


Method

本文引入了一个额外的(分类)任务来辅助半监督学习,即做一种Dual-Task Consistency,具体流程如下:
[论文阅读] Curriculum Semi-supervised Segmentation_第1张图片
可以看到整个框架有两个任务,一个是主任务,分割;另一个是辅助任务,回归。本文的一个亮点在于,这两个任务并不是同时协同训练的,而是有一个先后顺序,即所谓的课程学习Curriculum Learning。具体来说,首先利用有标注的图像训练一个回归网络,预测病灶的大小 min ⁡ θ ~ ∑ i ∈ S ( R ( X i ∣ θ ~ ) − ∑ p ∈ Ω Y i , p ) 2 \min _{\tilde{\boldsymbol{\theta}}} \sum_{i \in \mathcal{S}}\left(R\left(X_i \mid \tilde{\boldsymbol{\theta}}\right)-\sum_{p \in \Omega} Y_{i, p}\right)^2 θ~miniSR(Xiθ~)pΩYi,p2 再看基础的分割loss,如下,交叉熵损失: L Y ( θ ) = − ∑ i ∈ S ∑ p ∈ Ω Y i , p log ⁡ S ( X i ∣ θ ) p \mathcal{L}_Y(\boldsymbol{\theta})=-\sum_{i \in \mathcal{S}} \sum_{p \in \Omega} Y_{i, p} \log S\left(X_i \mid \boldsymbol{\theta}\right)_p LY(θ)=iSpΩYi,plogS(Xiθ)p 现在,在有了一个额外的回归网络后,我们就可以对分割loss作出进一步的约束,即分割预测map的面积要与回归网络预测的病灶面积保持一致:  s.t.  ∀ i ∈ U : ( 1 − γ ) R ( X i ∣ θ ~ ) ≤ ∑ p ∈ Ω S ( X i ∣ θ ) p ≤ ( 1 + γ ) R ( X i ∣ θ ~ ) \begin{array}{ll} \text { s.t. } \quad \forall i \in \mathcal{U}:(1-\gamma) R\left(X_i \mid \tilde{\boldsymbol{\theta}}\right) \leq \sum_{p \in \Omega} S\left(X_i \mid \boldsymbol{\theta}\right)_p \leq(1+\gamma) R\left(X_i \mid \tilde{\boldsymbol{\theta}}\right) \end{array}  s.t. iU:(1γ)R(Xiθ~)pΩS(Xiθ)p(1+γ)R(Xiθ~) 由于分类任务比分割任务要简单,因此利用这一额外的约束可以指导分割网络产生更符合逻辑的结果。

你可能感兴趣的:(Semi-Supervised,Learning,划水)