- Lecture 5:Training versus Testing
薛家掌柜的
回顾一下前四个Lecture,Lecture1讲的是找一个使得(也就是),Lecture2讲的是使得,Lecture3讲的是机器学习的分类,Lecture4讲的是让。那么,我们就有两个核心问题需要解决了。我们如何保证尽可能地靠近?我们如何使得足够小?而在这两个问题里面,假设集大小又扮演着什么样的角色?应该多大呢?如果是一个很小的,能够满足,但是可选的假设又太少了。如果是一个很大的,可选的假设很多,
- opencv 4.12.0版本发布详解:核心优化与新特性全解析
Risehuxyc
#opencvopencv人工智能计算机视觉
OpenCV4.12.0夏季更新带来核心模块优化、图像处理增强、深度学习支持扩展及新兴硬件适配,全面提升计算机视觉开发效率与性能。引言OpenCV(开源计算机视觉库)作为计算机视觉领域最受欢迎的开源库之一,在2025年7月发布了4.12.0版本。这个夏季更新带来了大量性能优化、新功能和错误修复,覆盖了核心模块、图像处理、3D校准、深度学习等多个领域。本文将详细介绍OpenCV4.12.0的主要更新
- Python 生物信息学秘籍第三版(四)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/9694cf42f7d741c69225ff1cf52b0efe译者:飞龙协议:CCBY-NC-SA4.0第十一章:生物信息学中的机器学习机器学习在许多不同的领域中都有应用,计算生物学也不例外。机器学习在该领域有着无数的应用,最古老且最为人熟知的应用之一就是使用主成分分析(PCA)通过基因组学研究种群结构。随着该领域的蓬勃发展,还有许多其他潜在的应
- AI人工智能领域Actor - Critic算法的可视化分析
AI智能探索者
AIAgent智能体开发实战人工智能算法ai
AI人工智能领域Actor-Critic算法的可视化分析关键词:Actor-Critic算法、强化学习、策略梯度、价值函数、可视化分析、神经网络、马尔可夫决策过程摘要:本文深入浅出地讲解Actor-Critic算法的核心原理,通过生活化的比喻和可视化分析,帮助读者理解这一强化学习中的重要算法。我们将从基础概念入手,逐步剖析算法架构,并通过Python代码实现和可视化演示,展示算法在实际问题中的应用
- 如何用深度学习实现图像风格迁移
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。前言图像风格迁移是人工智能领域中一个非常有趣且富有创意的应用。它能够让一张普通的照片瞬间变成梵高笔下的《星月夜》风格,或者像莫奈的《睡莲》一样充满艺术感。这种技术不仅在
- “闭门造车”之多模态思路浅谈:自回归学习与生成
PaperWeekly
回归学习数据挖掘人工智能机器学习
©PaperWeekly原创·作者|苏剑林单位|科学空间研究方向|NLP、神经网络这篇文章我们继续来闭门造车,分享一下笔者最近对多模态学习的一些新理解。在前文《“闭门造车”之多模态思路浅谈:无损》中,我们强调了无损输入对于理想的多模型模态的重要性。如果这个观点成立,那么当前基于VQ-VAE、VQ-GAN等将图像离散化的主流思路就存在能力瓶颈,因为只需要简单计算一下信息熵就可以表明离散化必然会有严重
- AI人工智能领域TensorFlow的模型训练策略
AIGC应用创新大全
人工智能tensorflowpythonai
AI人工智能领域TensorFlow的模型训练策略关键词:TensorFlow、模型训练、深度学习、神经网络、优化策略、分布式训练、迁移学习摘要:本文将深入探讨TensorFlow框架下的模型训练策略,从基础概念到高级技巧,全面解析如何高效训练深度学习模型。我们将从数据准备、模型构建、训练优化到部署应用,一步步揭示TensorFlow模型训练的核心技术,并通过实际代码示例展示最佳实践。背景介绍目的
- ROS2 通过相机确定物品坐标位置
要实现通过相机确定物品坐标位置,通常需要相机标定、物体检测和坐标转换几个步骤。下面我将提供一个完整的解决方案,包括相机标定、物体检测和3D坐标估计。1.系统架构相机标定-获取相机内参和畸变系数物体检测-使用OpenCV或深度学习模型检测物品坐标转换-将2D图像坐标转换为3D世界坐标ROS2集成-将上述功能集成到ROS2节点中2.实现步骤2.1创建功能包bashros2pkgcreateobject
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- 基于AutoCut实现在文档中按照片段剪辑视频
Mr数据杨
Python音频技术音视频
本项目致力于通过构建一个具备深度学习支持的多功能视频处理环境,为用户提供高效、智能的视频编辑和字幕生成工具。依托Anaconda环境管理工具和PyTorch的GPU加速能力,用户能够迅速搭建一个符合项目需求的Python环境。结合FunClip的源代码以及相关插件的安装和配置,用户可充分利用项目所支持的图像、音频识别功能,并以极少的配置便获得理想的视频裁剪效果。项目的核心在于简化深度学习项目的环境
- MATLAB 基于图像处理的杂草识别技术
鱼弦
matlab图像处理计算机视觉
MATLAB基于图像处理的杂草识别技术1.系统介绍杂草识别是精准农业中的重要环节,基于图像处理的杂草识别技术利用计算机视觉和机器学习算法,自动识别田间杂草,为精准施药提供决策支持。本系统基于MATLAB实现杂草图像处理,包括图像预处理、特征提取、分类识别等模块。2.应用场景精准农业:自动识别田间杂草,实现精准施药,减少农药使用量。生态监测:监测农田杂草种类和分布,评估生态环境。植物保护:识别有害杂
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 运维技术干货 — 不仅是 Linux 运维最佳实践
python算法小白
Linux
附Java/C/C++/机器学习/算法与数据结构/前端/安卓/Python/程序员必读书籍书单大全:书单导航页(点击右侧极客侠栈即可打开个人博客):极客侠栈①【Java】学习之路吐血整理技术书从入门到进阶最全50+本(珍藏版)②【算法数据结构+acm】从入门到进阶吐血整理书单50+本(珍藏版)③【数据库】从入门到进阶必读18本技术书籍网盘吐血整理网盘(珍藏版)④【Web前端】从HTML到JS到AJ
- 基于深度学习的和平精英(吃鸡)内置锁头训练
摆烂仙君
深度学习人工智能
前言本教程以和平精英为例,主要讲解如何构建深度学习模型对游戏中角色进行头部标注,并控制鼠标对其进行锁定射击,同时围绕其游戏防作弊系统进行算法攻防讲解,该方案对于csgo,cf等游戏也同样适用。请注意,该教程仅供娱乐教学,若本教程评论超过100,将会开源相关代码并对实际的代码部署进行进一步分析。一、和平精英伤害机制分析在《刺激战场》(现为《和平精英》)中,击中头部的伤害远高于身体其他部位,这是由游戏
- 基于蜣螂算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络实现温度预测DBO-CNN-biLSTM-Multihead-Attention附matlab代码
matlab科研助手
神经网络算法cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍温度预测在气象学、农业、能源等领域具有重要的应用价值。随着大数据和人工智能技术的快速发
- 迁移学习让深度学习更容易
城市中迷途小书童
摘要:一文读懂迁移学习及其对深度学习发展的影响!深度学习在一些传统方法难以处理的领域有了很大的进展。这种成功是由于改变了传统机器学习的几个出发点,使其在应用于非结构化数据时性能很好。如今深度学习模型可以玩游戏,检测癌症,和人类交谈,自动驾驶。深度学习变得强大的同时也需要很大的代价。进行深度学习需要大量的数据、昂贵的硬件、甚至更昂贵的精英工程人才。在ClouderaFastForward实验室,我们
- 股票基金量化开源平台对比
Mr.小海
开源开源金融
股票基金量化开源平台对比分析报告引言研究背景与意义在金融科技快速发展的背景下,量化交易已成为现代金融市场中投资者追求高效与精准交易的核心工具。通过程序化方式,投资者能够迅速处理海量市场数据,制定并执行复杂交易策略,其高效性、低情绪干扰及策略多样性等优势显著[1]。特别是随着人工智能技术的深化,2025年基于深度学习与机器学习的开源量化工具持续涌现,推动行业向数据驱动转型——量化交易将决策逻辑从经验
- 开源基金/股票量化平台调研报告
Mr.小海
金融
开源基金/股票量化平台调研报告引言调研背景与目的近年来,随着人工智能技术的持续深化,量化交易领域迎来了深刻变革。2025年,基于深度学习和机器学习的开源工具不断涌现,不仅在技术层面实现突破,更在实际应用中展现出强大竞争优势,推动行业创新与升级[1].作为融合数学、统计与计算机技术的科技驱动型金融策略,量化交易通过自动化与数据驱动方法提升投资决策效率与准确性,已成为金融机构与投资者追求超额收益的重要
- 神经网络:模拟人脑的 AI 信息处理系统
1.神经网络是什么:AI的“数字大脑”1.1从生物神经元到人工神经元人脑由860亿个神经元通过突触连接形成复杂网络,神经元通过电信号传递信息——当信号强度超过阈值时,神经元被激活并向其他神经元发送信号。神经网络正是模仿这一结构设计的计算模型,其核心是“人工神经元”和“层级连接”。人工神经元接收多个输入信号,通过权重(模拟突触强度)加权求和,再经激活函数处理(模拟神经元“是否激活”),输出结果。例如
- Python Gradio:快速搭建人脸识别应用
Python编程之道
Python人工智能与大数据Python编程之道python开发语言ai
PythonGradio:快速搭建人脸识别应用关键词:Python,Gradio,人脸识别,深度学习,计算机视觉,交互式应用,模型部署摘要:本文详细介绍了如何使用Python的Gradio库快速搭建一个交互式的人脸识别应用。我们将从基础概念出发,逐步讲解人脸识别的核心算法原理、Gradio的界面设计方法,并通过完整的项目实战演示如何将深度学习模型部署为可交互的Web应用。文章包含详细的代码实现、数
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- Python机器学习教程
Python机器学习教程(MachineLearningwithPythonTutorial)PDFVersionQuickGuideResourcesJobSearchDiscussionPDF版本快速指南资源资源求职讨论区MachineLearning(ML)isbasicallythatfieldofcomputersciencewiththehelpofwhichcomputersyste
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- 用Python实现神经网络(四)
使用多层神经网络我们展示如何用TensorFlow构建多层神经网络###低出生率数据LowBirthratedata:#Columns Variable Abbreviation#---------------------------------------------------------------------#Lo
- 基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现
神经网络15044
仿真模型神经网络机器学习图像处理cnn人工智能机器人
基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.引言在当今的互联网通信时代,实时语音通信已成为人们日常生活中不可或缺的一部分。然而,语音通信质量常常受到回声、背景噪声等因素的严重影响。为了解决这些问题,我们需要高效的语音增强技术。本文将详细介绍如何将DTLC-AEC(深度学习回声消
- Java云原生安全矩阵:从代码到运行时的量子级防御
墨夶
Java学习资料6java云原生安全
核心架构:SpringSecurity与Envoy的“量子态防御”基于声明式安全的“波函数坍缩”API网关的“暗物质过滤”代码示例:SpringSecurity的量子态权限控制威胁检测的“超弦理论”基于行为分析的“量子隧穿”异常检测实时日志的“引力波监测”代码示例:机器学习驱动的异常行为检测加密与密钥管理的“暗能量引擎”敏感数据的“量子态加密”密钥的“黑洞事件视界”保护代码示例:BCrypt与JW
- 入门
勤学奋进小郎君
了解机器学习标签需要通过机器学习模型判断出的结果特征机器学习模型进行判断的条件(可以是很多的变量)模型机器学习判断的工具降低损失线性回归y=mx+b其中:y指的是温度(以摄氏度表示),即我们试图预测的值。m指的是直线的斜率。x指的是每分钟的鸣叫声次数,即输入特征的值。b指的是y轴截距。2018-10-31_155803.png但是这样会对一些样本有误差,而我们的目的就是得到将误差降到最低的模型降低
- 第 20 课时:GPU 管理和 Device Plugin 工作机制(车漾)
阿里云云原生
CNCFX阿里巴巴云原生技术公开课阿里云KubernetesCNCF专家团队CNCF专家团队CNCF专家团队Kubernetes
本文将主要分享以下几个方面的内容:需求来源GPU的容器化Kubernetes的GPU管理工作原理课后思考与实践需求来源2016年,随着AlphaGo的走红和TensorFlow项目的异军突起,一场名为AI的技术革命迅速从学术圈蔓延到了工业界,所谓AI革命从此拉开了帷幕。经过三年的发展,AI有了许许多多的落地场景,包括智能客服、人脸识别、机器翻译、以图搜图等功能。其实机器学习或者说是人工智能,并不是
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu