- 【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024
hitrjj
LLMNLPPapers人工智能自然语言处理NLPLLM大语言模型
AI视野·今日CS.NLP自然语言处理论文速览Fri,1Mar2024Totally67papers上期速览✈更多精彩请移步主页DailyComputationandLanguagePapersLooseLIPSSinkShips:AskingQuestionsinBattleshipwithLanguage-InformedProgramSamplingAuthorsGabrielGrand,V
- DeepSeek API是什么
兔兔爱学习兔兔爱学习
大模型pythonprompt算法
DeepSeekAPI是一个提供人工智能服务的接口,它允许开发者通过简单的API调用来实现各种高级的自然语言处理(NLP)任务,如文本生成、对话系统、文本摘要、问答系统等。DeepSeekAPI通常基于先进的大模型,如Transformer架构的模型,提供了强大的语言理解和生成能力。DeepSeekAPI的特点易于集成:开发者可以通过简单的HTTP请求调用API,无需深入了解底层模型的具体实现。高
- DeepSeek各模型现有版本对比分析
墨染夜雨笺
DeepSeekAI
文章目录一、基础模型系列:V1到V3的演进二、专用模型系列:推理与多模态三、版本选型与商业化趋势DeepSeek作为最近特别火爆的模型,本文将对DeepSeek现有的主要版本进行对比分析,涵盖参数规模、训练数据、功能改进、应用场景和性能表现等方面。一、基础模型系列:V1到V3的演进DeepSeek-V1发布时间:2024年1月特点:首代模型,专注于自然语言处理(NLP)和编码任务,支持128K标记
- 使用 LangChain 与 Solar LLM 的快速集成示例
qahaj
langchainpython开发语言
在本篇文章中,我们将深入探讨如何通过LangChain框架与SolarLLM(已弃用)进行集成。这虽然是一个过时的示例,但仍然可以帮助我们掌握如何使用类似的模型连接器设计结构化的语言模型调用流程。更重要的是,我们还会通过实际代码,展示集成的实现过程。一、技术背景介绍LangChain是一个强大的框架,它可以帮助开发者轻松集成不同的自然语言处理(NLP)模型,并构建复杂的链式推理任务。SolarLL
- 百度文心大模型API保姆级教程:从入门到实战
海棠AI实验室
智元启示录百度API文心大模型
目录文心大模型简介文心大模型vs.OpenAIGPT系列应用构建实例API集成详细步骤准备工作获取AccessToken发起API请求API的调试和常见问题的解决进阶应用安全性和最佳实践总结与未来展望随着大型语言模型(LLMs)在全球范围内的兴起,百度文心大模型(ERNIE)已成为人工智能领域的一颗耀眼新星。对标OpenAI的GPT系列,文心大模型致力于为中文用户提供卓越的自然语言处理能力,广泛赋
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 深度求索DeepSeek:AI大模型的全域应用与技术突破
量子纠缠BUG
DeepSeek部署DeepSeekAI人工智能easyui前端
——从政务到医疗,解析国产大模型的创新实践与未来图景引言:DeepSeek的技术定位与行业价值DeepSeek(深度求索)作为中国AI领域的新锐力量,凭借"低成本、高精度、强场景适配"的差异化优势,在短短两年内实现了从技术研发到行业落地的跨越式发展。其基于DeepSeek-R1系列大模型的创新架构,以600万美元的超低训练成本(仅为OpenAI同类模型的1/30)3,在自然语言处理、逻辑推理、多模
- ai大模型自动化测试-TensorFlow Testing 测试模型实例
小赖同学啊
人工智能自动化测试(apppcAPI)python人工智能tensorflowpython
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍:测试流程测试计划制定确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准确率、召回率等。定义测试范围:界定测试所涵盖的模型功能模块、数据类型、应用场景等,比如是否包括图像识别、自然语言处理等不同功能。规划测试资源:确
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- OpenAI: 人工智能领域的领军企业
2401_87458718
人工智能
OpenAI简介OpenAI是一家位于美国旧金山的人工智能研究实验室,成立于2015年。作为人工智能领域的领军企业,OpenAI致力于开发安全友好的通用人工智能(AGI),其使命是确保人工通用智能能够造福全人类。自成立以来,OpenAI在自然语言处理、计算机视觉、强化学习等多个人工智能领域取得了突破性进展,推出了一系列广受关注的AI模型和产品。OpenAI的发展历程OpenAI由埃隆·马斯克、山姆
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 学习心得体会:深入探讨大语言模型的世界——读《自然语言处理:大模型理论与实践》(预览版)有感
Nuyoah_610
自然语言处理学习语言模型
《自然语言处理:大模型理论与实践》(预览版)由赵宇教授编写,是一本深入探讨大语言模型世界的专业著作。作为一名正在学习和研究自然语言处理的学生,这本书为我提供了宝贵的理论基础和实践指导。《自然语言处理:大模型理论与实践》教材官网:首页|自然语言处理:大模型理论与实践赵宇教授简介西南财经大学教授,博导,四川省学术和技术带头人后备人选,金融智能与金融工程四川省重点实验室副主任,通用人工智能与数字经济创新
- 深入Java自然语言交互的情感分析:从零构建智能情感检测系统
墨夶
Java学习资料2java交互开发语言
在这个信息爆炸的时代,如何快速准确地理解大量文本背后的情绪成为了企业和个人关注的焦点。无论是社交媒体监控、产品评论分析还是客户服务优化,情感分析技术都发挥着至关重要的作用。今天,我们将带您一步步构建一个基于Java的情感分析应用,让您不仅能够理解其背后的原理,还能亲手实现这一强大的工具。技术栈简介在开始之前,我们需要了解几个关键的技术点:StanfordNLP:提供了一套全面的自然语言处理功能,包
- NLP作业02:课程设计报告
0255-
自然语言处理课程设计人工智能
NLP作业02:课程设计报告作业头这个作业属于那个课程自然语言处理这个作业要求在哪里NLP作业02:课程设计报告我在这个课程的目标是通过综合应用项目的实施,培养团队协作沟通能力和运用现代工具分析和解决复杂工程问题的能力这个作业在那个具体方面帮助我实现目标能综合运用所学理论知识和操作技能进行实际工程项目的设计开发参考文献http://t.csdn.cn/mu8sF垃圾短信分类1.设计目的通过课程设计
- 即插即用的注意力机制21种
@Mr_LiuYang
论文阅读AttentionModule注意力机制即插即用
提示:谬误之处请指出更正摘要随着深度学习特别是自然语言处理领域的飞速发展,注意力机制(AttentionMechanism)已成为提升模型表现的关键技术,本文主要记录了即插即用的注意力机制结构的功能、出处及核心代码。1、SEBlock(Squeeze-and-Excitation)功能:自适应学习通道权重,增强重要通道特征。出处:SENet#SEBlock(PyTorch)classSEBlock
- 自然语言处理(NLP):文本向量化从文字到数字的原理
全栈你个大西瓜
人工智能自然语言处理人工智能文本向量化NLP
在人工智能领域,尤其是自然语言处理(NLP)中,将文本信息转化为机器可以理解的形式是一个至关重要的步骤。本文探讨如何将文本转换为向量表示的过程,包括分词、ID映射、One-hot编码以及最终的词嵌入(Embedding),并通过具体的案例代码来辅助解释这些概念。处理字符还是数字人工智能算法只能处理数字形式的数据,特别是浮点数。这意味着任何非数字的信息,如汉字、字母等,都需要被转换成数值形式才能用于
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 使用 DistilBERT 进行资源高效的自然语言处理
真智AI
自然语言处理人工智能
DistilBERT是BERT的一个更小、更快的版本,在减少资源消耗的同时仍能保持良好性能。对于计算能力和内存受限的环境来说,它是一个理想的选择。在自然语言处理(NLP)中,像BERT这样的模型提供了高精度和出色的性能。然而,它们需要大量的内存和计算资源,这对于资源有限的组织来说是一个挑战。同时,对于需要快速响应的任务来说,这也是一个问题。DistilBERT通过缩小模型规模并加快推理速度来解决这
- DeepSeek高能AI:低成本高效应用突破
智能计算研究中心
其他
内容概要DeepSeek高能AI系统通过混合专家架构(Mixture-of-Experts)实现了技术范式的突破,其670亿参数的模型规模在保证计算效率的同时,构建了多模态处理能力的技术护城河。该系统整合自然语言处理与视觉语言理解的双通道架构,使文本生成、图像解析和跨模态推理形成协同效应。在应用层面,该模型通过动态路由机制实现功能模块的精准调度,为学术研究、商业运营和技术开发提供多场景解决方案。核
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- 2025预测趋势:AI知识库工具挑选指南
知识库知识库管理知识库软件
随着人工智能技术的飞速发展,AI知识库工具已成为企业和个人管理知识资产的重要手段。本文将探讨2025年AI知识库工具的预测趋势,并推荐六款精选工具,帮助用户挑选最适合的AI知识库解决方案。1.AI知识库的智能化:趋势预计到2025年,AI知识库工具将更加智能化,通过深度学习和自然语言处理技术,实现更精准的语义搜索和智能问答功能。这些工具将能够理解用户的查询意图,提供更准确和相关的信息。2.实时自动
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- ollama安装(ubuntu20.04)
名栩
#ollama大模型实战LLMollama安装
Ollama是一款开源的自然语言处理工具,它可以帮助开发者快速构建文本处理应用。ollama官网:https://ollama.ai/一、ollama自动安装linux统一采用sh脚本安装,一个命令行搞定。curl-fsSLhttps://ollama.com/install.sh|sh二、ollama手动安装ollama自动安装是通过github拉取下载包(现在安装包已经1G以上),在国内经常下
- DeepSeek在MATLAB上的部署与应用
CodeJourney.
数据库人工智能算法架构
在科技飞速发展的当下,人工智能与编程语言的融合不断拓展着创新边界。DeepSeek作为一款备受瞩目的大语言模型,其在自然语言处理领域展现出强大的能力。而MATLAB,作为科学计算和工程领域广泛应用的专业软件,拥有丰富的工具包和高效的算法环境。将DeepSeek部署在MATLAB上,能够充分发挥两者的优势,为众多领域带来全新的解决方案和无限可能。本文将深入探讨如何在MATLAB上部署DeepSeek
- 为什么词向量和权重矩阵dot运算就能得到想要的效果呢?
cjl30804
矩阵线性代数nlp
最近在学习NLP算法的时候,进入到了深水区以后,发现了弄懂这个才是核心中的核心,抓住了主要矛盾了。特意拿出来跟大家分享。词向量(WordEmbeddings)和权重矩阵的点积运算之所以能够帮助我们实现特定的效果,主要是因为它们在神经网络架构中扮演的角色以及背后的数学原理。具体来说,在自然语言处理任务中,这种操作通常出现在如Transformer模型中的自注意力机制里。让我们深入探讨一下为什么这种方
- Engineering A Large Language Model From Scratch
UnknownBody
语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EngineeringALargeLanguageModelFromScratch》的翻译。从头开始设计一个大语言模型摘要1引言2Atinuke算法3结果4相关工作5讨论6结论摘要自然语言处理(NLP)中深度学习的激增导致了创新技术的发展和发布,这些技术能够熟练地理解和生成人类语言。Atinuke是一种基于Transformer的神经网络,通过使用独特的配置来优化各种语
- 智能测试执行 利用算法 利用图像识别、自然语言处理等技术实现自动化测试执行
小赖同学啊
python人工智能自动化测试(apppcAPI)自然语言处理人工智能
以下将从Web应用和移动应用两个方面,给出利用图像识别、自然语言处理等技术实现自动化测试执行的实例,并附上部分代码示例。Web应用自动化测试实例:模拟用户登录操作测试需求理解对于一个Web应用的登录功能进行自动化测试,我们可以结合自然语言处理理解测试用例描述,用图像识别来验证登录成功后的页面元素,以确保登录功能正常。实现步骤与代码示例importtimeimportpyautoguiimportp
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring