写在前面:程序不是很难,只是调用了很多的库,安装好库后点击运行即可。
pip install 以下这些
mediapipe==0.8.9
numpy
autopy
numpy
opencv-python
如果还有缺少按照相应的报错提示安装对应的库即可。
通过食指控制鼠标移动,五指控制上滑下滑,双指右键。
具体效果不展示了,因为不愿意露脸,大家自己尝试一下就知道了。
demo_windows.py
"""
功能:手势操作电脑鼠标
1、使用OpenCV读取摄像头视频流;
2、识别手掌关键点像素坐标;
3、根据坐标计算不同的手势模式
4、控制对应的鼠标操作:移动、单击、双击、右击、向上滑、向下滑、拖拽
"""
# 导入其他依赖包
import time
import autopy
# 导入OpenCV
import cv2
import numpy as np
import pyautogui
# 导入handprocess
import handProcess
from utils import Utils
# 识别控制类
class VirtualMouse:
def __init__(self):
# image实例,以便另一个类调用
self.image=None
# 主函数
def recognize(self):
handprocess = handProcess.HandProcess(False,1)
utils = Utils()
fpsTime = time.time()
cap = cv2.VideoCapture(0)
# 视频分辨率
resize_w = 960
resize_h = 720
# 控制边距
frameMargin = 100
# 屏幕尺寸
screenWidth, screenHeight = pyautogui.size()
# 柔和处理参数
stepX, stepY = 0, 0
finalX, finalY = 0, 0
smoothening = 7
action_trigger_time = {
'single_click':0,
'double_click':0,
'right_click':0
}
mouseDown = False
# fps = cap.get(cv2.CAP_PROP_FPS)
# fps = 18
# videoWriter = cv2.VideoWriter('./record_video/out'+str(time.time())+'.mp4', cv2.VideoWriter_fourcc(*'H264'), fps, (618,720))
while cap.isOpened():
action_zh = ''
success, self.image = cap.read()
# 裁剪
self.image = cv2.resize(self.image, (resize_w, resize_h))
if not success:
print("空帧")
continue
# 提高性能
self.image.flags.writeable = False
# 转为RGB
self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB)
# 镜像,需要根据镜头位置来调整
self.image = cv2.flip(self.image, 1)
# 处理手掌
self.image = handprocess.processOneHand(self.image)
# 画框框
cv2.rectangle(self.image, (frameMargin, frameMargin), (resize_w - frameMargin, resize_h - frameMargin),(255, 0, 255), 2)
# 获取动作
self.image,action,key_point = handprocess.checkHandAction(self.image,drawKeyFinger=True)
action_zh = handprocess.action_labels[action]
if key_point:
# 映射距离
x3 = np.interp(key_point[0], (frameMargin, resize_w - frameMargin), (0, screenWidth))
y3 = np.interp(key_point[1], (frameMargin, resize_h - frameMargin), (0, screenHeight))
# 柔和处理
finalX = stepX + (x3 - stepX) / smoothening
finalY = stepY + (y3 - stepY) / smoothening
now = time.time()
if action_zh == '鼠标拖拽':
# 原始方法
# pyautogui.dragTo(finalX, finalY)
# 解决windows可能无效及卡顿问题
if not mouseDown:
pyautogui.mouseDown(button='left')
mouseDown = True
autopy.mouse.move(finalX, finalY)
else:
if mouseDown:
pyautogui.mouseUp(button='left')
mouseDown = False
if action_zh == '鼠标移动':
# pyautogui.moveTo(finalX, finalY)
# 解决移动卡顿的问题
autopy.mouse.move(finalX, finalY)
elif action_zh == '单击准备':
pass
elif action_zh == '触发单击' and (now - action_trigger_time['single_click'] > 0.3):
pyautogui.click()
action_trigger_time['single_click'] = now
elif action_zh == '右击准备':
pass
elif action_zh == '触发右击' and (now - action_trigger_time['right_click'] > 2):
pyautogui.click(button='right')
action_trigger_time['right_click'] = now
elif action_zh == '向上滑页':
pyautogui.scroll(30)
elif action_zh == '向下滑页':
pyautogui.scroll(-30)
stepX, stepY = finalX, finalY
self.image.flags.writeable = True
self.image = cv2.cvtColor(self.image, cv2.COLOR_RGB2BGR)
# 显示刷新率FPS
cTime = time.time()
fps_text = 1/(cTime-fpsTime)
fpsTime = cTime
self.image = utils.cv2AddChineseText(self.image, "帧率: " + str(int(fps_text)), (10, 30), textColor=(255, 0, 255), textSize=50)
# 显示画面
# videoWriter.write(self.image)
self.image = cv2.resize(self.image, (resize_w//2, resize_h//2))
cv2.imshow('virtual mouse', self.image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
# 开始程序
control = VirtualMouse()
control.recognize()
handProcess.py
"""
! author: enpei
! date: 2021-12-15
功能:封装手部识别常用功能,简化Demo代码复杂度
"""
# 导入OpenCV
import cv2
# 导入mediapipe
import mediapipe as mp
import time
import math
import numpy as np
from utils import Utils
class HandProcess:
def __init__(self,static_image_mode=False,max_num_hands=2):
# 参数
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mp_hands = mp.solutions.hands
self.hands = self.mp_hands.Hands(static_image_mode=static_image_mode,
min_detection_confidence=0.7,
min_tracking_confidence=0.5,
max_num_hands=max_num_hands)
self.landmark_list = []
self.action_labels = {
'none': '无',
'move': '鼠标移动',
'click_single_active': '触发单击',
'click_single_ready': '单击准备',
'click_right_active': '触发右击',
'click_right_ready': '右击准备',
'scroll_up': '向上滑页',
'scroll_down': '向下滑页',
'drag': '鼠标拖拽'
}
self.action_deteted = ''
# 检查左右手在数组中的index
def checkHandsIndex(self,handedness):
# 判断数量
if len(handedness) == 1:
handedness_list = [handedness[0].classification[0].label]
else:
handedness_list = [handedness[0].classification[0].label,handedness[1].classification[0].label]
return handedness_list
# 计算两点点的距离
def getDistance(self,pointA,pointB):
return math.hypot((pointA[0]-pointB[0]),(pointA[1]-pointB[1]))
# 获取坐标
def getFingerXY(self,index):
return (self.landmark_list[index][1],self.landmark_list[index][2])
# 绘制相关点
def drawInfo(self,img,action):
thumbXY,indexXY,middleXY = map(self.getFingerXY,[4,8,12])
if action == 'move':
img = cv2.circle(img,indexXY,20,(255,0,255),-1)
elif action == 'click_single_active':
middle_point = int(( indexXY[0]+ thumbXY[0])/2),int(( indexXY[1]+ thumbXY[1] )/2)
img = cv2.circle(img,middle_point,30,(0,255,0),-1)
elif action == 'click_single_ready':
img = cv2.circle(img,indexXY,20,(255,0,255),-1)
img = cv2.circle(img,thumbXY,20,(255,0,255),-1)
img = cv2.line(img,indexXY,thumbXY,(255,0,255),2)
elif action == 'click_right_active':
middle_point = int(( indexXY[0]+ middleXY[0])/2),int(( indexXY[1]+ middleXY[1] )/2)
img = cv2.circle(img,middle_point,30,(0,255,0),-1)
elif action == 'click_right_ready':
img = cv2.circle(img,indexXY,20,(255,0,255),-1)
img = cv2.circle(img,middleXY,20,(255,0,255),-1)
img = cv2.line(img,indexXY,middleXY,(255,0,255),2)
return img
# 返回手掌各种动作
def checkHandAction(self,img,drawKeyFinger=True):
upList = self.checkFingersUp()
action = 'none'
if len(upList) == 0:
return img,action,None
# 侦测距离
dete_dist = 100
# 中指
key_point = self.getFingerXY(8)
# 移动模式:单个食指在上,鼠标跟随食指指尖移动,需要smooth处理防抖
if (upList == [0,1,0,0,0]):
action = 'move'
# 单击:食指与拇指出现暂停移动,如果两指捏合,触发单击
if (upList == [1,1,0,0,0]):
l1 = self.getDistance(self.getFingerXY(4),self.getFingerXY(8))
action = 'click_single_active' if l1 < dete_dist else 'click_single_ready'
# 右击:食指、中指出现暂停移动,如果两指捏合,触发右击
if (upList == [0,1,1,0,0]):
l1 = self.getDistance(self.getFingerXY(8),self.getFingerXY(12))
action = 'click_right_active' if l1 < dete_dist else 'click_right_ready'
# 向上滑:五指向上
if (upList == [1,1,1,1,1]):
action = 'scroll_up'
# 向下滑:除拇指外四指向上
if (upList == [0,1,1,1,1]):
action = 'scroll_down'
# 拖拽:拇指、食指外的三指向上
if (upList == [0,0,1,1,1]):
# 换成中指
key_point = self.getFingerXY(12)
action = 'drag'
# 根据动作绘制相关点
img = self.drawInfo(img,action) if drawKeyFinger else img
self.action_deteted = self.action_labels[action]
return img,action,key_point
# 返回向上手指的数组
def checkFingersUp(self):
fingerTipIndexs = [4,8,12,16,20]
upList = []
if len(self.landmark_list) == 0:
return upList
# 拇指,比较x坐标
if self.landmark_list[fingerTipIndexs[0]][1] < self.landmark_list[fingerTipIndexs[0]-1][1]:
upList.append(1)
else:
upList.append(0)
# 其他指头,比较Y坐标
for i in range(1,5):
if self.landmark_list[fingerTipIndexs[i]][2] < self.landmark_list[fingerTipIndexs[i]-2][2]:
upList.append(1)
else:
upList.append(0)
return upList
# 分析手
def processOneHand(self,img,drawBox=True,drawLandmarks=True):
utils = Utils()
results = self.hands.process(img)
self.landmark_list = []
if results.multi_hand_landmarks:
for hand_index,hand_landmarks in enumerate(results.multi_hand_landmarks):
if drawLandmarks:
self.mp_drawing.draw_landmarks(
img,
hand_landmarks,
self.mp_hands.HAND_CONNECTIONS,
self.mp_drawing_styles.get_default_hand_landmarks_style(),
self.mp_drawing_styles.get_default_hand_connections_style())
# 遍历landmark
for landmark_id, finger_axis in enumerate(hand_landmarks.landmark):
h,w,c = img.shape
p_x,p_y = math.ceil(finger_axis.x * w), math.ceil(finger_axis.y * h)
self.landmark_list.append([
landmark_id, p_x, p_y,
finger_axis.z
])
# 框框和label
if drawBox:
x_min,x_max = min(self.landmark_list,key=lambda i : i[1])[1], max(self.landmark_list,key=lambda i : i[1])[1]
y_min,y_max = min(self.landmark_list,key=lambda i : i[2])[2], max(self.landmark_list,key=lambda i : i[2])[2]
img = cv2.rectangle(img,(x_min-30,y_min-30),(x_max+30,y_max+30),(0, 255, 0),2)
img = utils.cv2AddChineseText(img, self.action_deteted, (x_min-20,y_min-120), textColor=(255, 0, 255), textSize=60)
return img
utils.py
# 导入PIL
from PIL import Image, ImageDraw, ImageFont
# 导入OpenCV
import cv2
import numpy as np
class Utils:
def __init__(self):
pass
# 添加中文
def cv2AddChineseText(self,img, text, position, textColor=(0, 255, 0), textSize=30):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"./fonts/simsun.ttc", textSize, encoding="utf-8")
# 绘制文本
draw.text(position, text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)