项目地址:https://github.com/cfzd/Ultra-Fast-Lane-Detection
issue中作者回答了很多训练数据集及检测其他视频的回答
作者知乎文章:https://zhuanlan.zhihu.com/p/157530787
仅修改demo程序以适用于1920*1080分辨率视频。测试使用,如需更好效果应修改源程序并重新训练模型。
import torch, os
import cv2
from model.model import parsingNet
from utils.common import merge_config
from utils.dist_utils import dist_print
import torch
import scipy.special, tqdm
import numpy as np
import torchvision.transforms as transforms
from data.dataset import LaneTestDataset
from data.constant import culane_row_anchor, tusimple_row_anchor
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
args, cfg = merge_config()
dist_print('start testing...')
assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']
if cfg.dataset == 'CULane':
cls_num_per_lane = 18
elif cfg.dataset == 'Tusimple':
cls_num_per_lane = 56
else:
raise NotImplementedError
net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4),
use_aux=False).cuda() # we dont need auxiliary segmentation in testing
state_dict = torch.load(cfg.test_model, map_location='cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict=False)
net.eval()
img_transforms = transforms.Compose([
#transforms.CenterCrop((590,1640)),
transforms.Resize((288, 800)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
cap = cv2.VideoCapture("your-test-video.mp4")
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
rval,frame = cap.read()
frame = frame[490:1080,0:1640,:]
vout = cv2.VideoWriter('output.avi', fourcc , 30.0, (frame.shape[1],frame.shape[0]))
print("w= {},h = {}".format(cap.get(3),cap.get(4)))
from PIL import Image
print('加载CUDA是否成功:',torch.cuda.is_available())
while 1:
rval,frame = cap.read()
if rval == False:
break
frame = frame[490:1080,0:1640,:]
img = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
img_ = Image.fromarray(img)
imgs = img_transforms(img_)
imgs = imgs.unsqueeze(0)
imgs = imgs.cuda()
with torch.no_grad():
out = net(imgs)
col_sample = np.linspace(0, 800 - 1, cfg.griding_num)
col_sample_w = col_sample[1] - col_sample[0]
out_j = out[0].data.cpu().numpy()
out_j = out_j[:, ::-1, :]
prob = scipy.special.softmax(out_j[:-1, :, :], axis=0)
idx = np.arange(cfg.griding_num) + 1
idx = idx.reshape(-1, 1, 1)
loc = np.sum(prob * idx, axis=0)
out_j = np.argmax(out_j, axis=0)
loc[out_j == cfg.griding_num] = 0
out_j = loc
for i in range(out_j.shape[1]):
if np.sum(out_j[:, i] != 0) > 2:
for k in range(out_j.shape[0]):
if out_j[k, i] > 0:
ppp = (int(out_j[k, i] * col_sample_w * frame.shape[1] / 800) - 1, int(frame.shape[0] - k * 20) - 1)
cv2.circle(frame,ppp,5,(0,255,0),-1)
vout.write(frame)
vout.release()
python demo.py configs/culane.py --test_model path_to_culane_18.pth