需要数据集可以自行网上寻找(都是公开的数据集)或私聊博主,传到csdn,你们下载要会员,就不传了。下面数据集链接下载不一定能成功。
We are going to use a subset of US Baby Names from Kaggle.
In the file it will be names from 2004 until 2014
代码如下:
import pandas as pd
代码如下:
baby_names = pd.read_csv("US_Baby_Names_right.csv")
baby_names.info()
输出结果如下:
RangeIndex: 1016395 entries, 0 to 1016394
Data columns (total 7 columns):
Unnamed: 0 1016395 non-null int64
Id 1016395 non-null int64
Name 1016395 non-null object
Year 1016395 non-null int64
Gender 1016395 non-null object
State 1016395 non-null object
Count 1016395 non-null int64
dtypes: int64(4), object(3)
memory usage: 54.3+ MB
代码如下:
baby_names.head(10)
输出结果如下:
Unnamed: 0 | Id | Name | Year | Gender | State | Count | |
---|---|---|---|---|---|---|---|
0 | 11349 | 11350 | Emma | 2004 | F | AK | 62 |
1 | 11350 | 11351 | Madison | 2004 | F | AK | 48 |
2 | 11351 | 11352 | Hannah | 2004 | F | AK | 46 |
3 | 11352 | 11353 | Grace | 2004 | F | AK | 44 |
4 | 11353 | 11354 | Emily | 2004 | F | AK | 41 |
5 | 11354 | 11355 | Abigail | 2004 | F | AK | 37 |
6 | 11355 | 11356 | Olivia | 2004 | F | AK | 33 |
7 | 11356 | 11357 | Isabella | 2004 | F | AK | 30 |
8 | 11357 | 11358 | Alyssa | 2004 | F | AK | 29 |
9 | 11358 | 11359 | Sophia | 2004 | F | AK | 28 |
代码如下:
del baby_names['Id']
# OR del baby_names['Unnamed: 0']
baby_names = baby_names.loc[:, ~baby_names.columns.str.contains('^Unnamed')]
baby_names.head()
输出结果如下:
Name | Year | Gender | State | Count | |
---|---|---|---|---|---|
0 | Emma | 2004 | F | AK | 62 |
1 | Madison | 2004 | F | AK | 48 |
2 | Hannah | 2004 | F | AK | 46 |
3 | Grace | 2004 | F | AK | 44 |
4 | Emily | 2004 | F | AK | 41 |
代码如下:
# baby_names['Gender'].value_counts()
baby_names.groupby('Gender').Count.sum()
输出结果如下:
Gender
F 16380293
M 19041199
Name: Count, dtype: int64
代码如下:
del baby_names["Year"]
names = baby_names.groupby("Name").sum()
names.head()
print(names.shape)
names.sort_values("Count", ascending = 0).head()
# names= baby_names.groupby('Name')
# names.head(1)
输出结果如下:
(17632, 1)
Count | |
---|---|
Name | |
Jacob | 242874 |
Emma | 214852 |
Michael | 214405 |
Ethan | 209277 |
Isabella | 204798 |
代码如下:
len(names)
输出结果如下:
17632
代码如下:
# names['Count'].sum().argmax()
names.Count.idxmax() # idxmax()获取pandas中series最大值对应的索引
输出结果如下:
'Jacob'
代码如下:
len(names[names.Count == names.Count.min()])
输出结果如下:
2578
代码如下:
names[names.Count == names.Count.median()]
输出结果如下:
Count | |
---|---|
Name | |
Aishani | 49 |
Alara | 49 |
Alysse | 49 |
Ameir | 49 |
Anely | 49 |
Antonina | 49 |
Aveline | 49 |
Aziah | 49 |
Baily | 49 |
Caleah | 49 |
Carlota | 49 |
Cristine | 49 |
Dahlila | 49 |
Darvin | 49 |
Deante | 49 |
Deserae | 49 |
Devean | 49 |
Elizah | 49 |
Emmaly | 49 |
Emmanuela | 49 |
Envy | 49 |
Esli | 49 |
Fay | 49 |
Gurshaan | 49 |
Hareem | 49 |
Iven | 49 |
Jaice | 49 |
Jaiyana | 49 |
Jamiracle | 49 |
Jelissa | 49 |
... | ... |
Kyndle | 49 |
Kynsley | 49 |
Leylanie | 49 |
Maisha | 49 |
Malillany | 49 |
Mariann | 49 |
Marquell | 49 |
Maurilio | 49 |
Mckynzie | 49 |
Mehdi | 49 |
Nabeel | 49 |
Nalleli | 49 |
Nassir | 49 |
Nazier | 49 |
Nishant | 49 |
Rebecka | 49 |
Reghan | 49 |
Ridwan | 49 |
Riot | 49 |
Rubin | 49 |
Ryatt | 49 |
Sameera | 49 |
Sanjuanita | 49 |
Shalyn | 49 |
Skylie | 49 |
Sriram | 49 |
Trinton | 49 |
Vita | 49 |
Yoni | 49 |
Zuleima | 49 |
66 rows × 1 columns
代码如下:
names.Count.std()
输出结果如下:
11006.069467891111
代码如下:
names.describe()
输出结果如下:
Count | |
---|---|
count | 17632.000000 |
mean | 2008.932169 |
std | 11006.069468 |
min | 5.000000 |
25% | 11.000000 |
50% | 49.000000 |
75% | 337.000000 |
max | 242874.000000 |
The data have been modified to contain some missing values, identified by NaN.
Using pandas should make this exercise
easier, in particular for the bonus question.
You should be able to perform all of these operations without using
a for loop or other looping construct.
"""
Yr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL
61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04
61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83
61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71
"""
'\nYr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL\n61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04\n61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83\n61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71\n'
The first three columns are year, month and day. The
remaining 12 columns are average windspeeds in knots at 12
locations in Ireland on that day.
More information about the dataset go here.
代码如下:
import pandas as pd
import datetime
代码如下:
data = pd.read_table('wind.data', sep='\s+', parse_dates = [[0, 1, 2]])
data.head()
输出结果如下:
Yr_Mo_Dy | RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2061-01-01 | 15.04 | 14.96 | 13.17 | 9.29 | NaN | 9.87 | 13.67 | 10.25 | 10.83 | 12.58 | 18.50 | 15.04 |
1 | 2061-01-02 | 14.71 | NaN | 10.83 | 6.50 | 12.62 | 7.67 | 11.50 | 10.04 | 9.79 | 9.67 | 17.54 | 13.83 |
2 | 2061-01-03 | 18.50 | 16.88 | 12.33 | 10.13 | 11.17 | 6.17 | 11.25 | NaN | 8.50 | 7.67 | 12.75 | 12.71 |
3 | 2061-01-04 | 10.58 | 6.63 | 11.75 | 4.58 | 4.54 | 2.88 | 8.63 | 1.79 | 5.83 | 5.88 | 5.46 | 10.88 |
4 | 2061-01-05 | 13.33 | 13.25 | 11.42 | 6.17 | 10.71 | 8.21 | 11.92 | 6.54 | 10.92 | 10.34 | 12.92 | 11.83 |
代码如下:
def fix_century(x):
year = x.year - 100 if x.year > 1989 else x.year
return datetime.date(year, x.month, x.day)
data['Yr_Mo_Dy'] = data['Yr_Mo_Dy'].apply(fix_century)
data.head()
输出结果如下:
Yr_Mo_Dy | RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1961-01-01 | 15.04 | 14.96 | 13.17 | 9.29 | NaN | 9.87 | 13.67 | 10.25 | 10.83 | 12.58 | 18.50 | 15.04 |
1 | 1961-01-02 | 14.71 | NaN | 10.83 | 6.50 | 12.62 | 7.67 | 11.50 | 10.04 | 9.79 | 9.67 | 17.54 | 13.83 |
2 | 1961-01-03 | 18.50 | 16.88 | 12.33 | 10.13 | 11.17 | 6.17 | 11.25 | NaN | 8.50 | 7.67 | 12.75 | 12.71 |
3 | 1961-01-04 | 10.58 | 6.63 | 11.75 | 4.58 | 4.54 | 2.88 | 8.63 | 1.79 | 5.83 | 5.88 | 5.46 | 10.88 |
4 | 1961-01-05 | 13.33 | 13.25 | 11.42 | 6.17 | 10.71 | 8.21 | 11.92 | 6.54 | 10.92 | 10.34 | 12.92 | 11.83 |
代码如下:
data["Yr_Mo_Dy"] = pd.to_datetime(data["Yr_Mo_Dy"]) # 转换为datetime64
data = data.set_index('Yr_Mo_Dy')
data.head()
输出结果如下:
RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yr_Mo_Dy | ||||||||||||
1961-01-01 | 15.04 | 14.96 | 13.17 | 9.29 | NaN | 9.87 | 13.67 | 10.25 | 10.83 | 12.58 | 18.50 | 15.04 |
1961-01-02 | 14.71 | NaN | 10.83 | 6.50 | 12.62 | 7.67 | 11.50 | 10.04 | 9.79 | 9.67 | 17.54 | 13.83 |
1961-01-03 | 18.50 | 16.88 | 12.33 | 10.13 | 11.17 | 6.17 | 11.25 | NaN | 8.50 | 7.67 | 12.75 | 12.71 |
1961-01-04 | 10.58 | 6.63 | 11.75 | 4.58 | 4.54 | 2.88 | 8.63 | 1.79 | 5.83 | 5.88 | 5.46 | 10.88 |
1961-01-05 | 13.33 | 13.25 | 11.42 | 6.17 | 10.71 | 8.21 | 11.92 | 6.54 | 10.92 | 10.34 | 12.92 | 11.83 |
代码如下:
data.isnull().sum()
输出结果如下:
RPT 6
VAL 3
ROS 2
KIL 5
SHA 2
BIR 0
DUB 3
CLA 2
MUL 3
CLO 1
BEL 0
MAL 4
dtype: int64
代码如下:
data.shape[0] - data.isnull().sum()
#OR data.notnull.sum()
输出结果如下:
RPT 6568
VAL 6571
ROS 6572
KIL 6569
SHA 6572
BIR 6574
DUB 6571
CLA 6572
MUL 6571
CLO 6573
BEL 6574
MAL 6570
dtype: int64
代码如下:
data.fillna(0).values.flatten().mean() # a.flatten()就是把data降到一维,默认是按行的方向降
输出结果如下:
10.223864592840483
代码如下:
# loc_stats = data.loc[:, 'RPT':'MAL'].describe(percentiles=[])
# loc_stats
data.describe(percentiles=[])
输出结果如下:
RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 6568.000000 | 6571.000000 | 6572.000000 | 6569.000000 | 6572.000000 | 6574.000000 | 6571.000000 | 6572.000000 | 6571.000000 | 6573.000000 | 6574.000000 | 6570.000000 |
mean | 12.362987 | 10.644314 | 11.660526 | 6.306468 | 10.455834 | 7.092254 | 9.797343 | 8.495053 | 8.493590 | 8.707332 | 13.121007 | 15.599079 |
std | 5.618413 | 5.267356 | 5.008450 | 3.605811 | 4.936125 | 3.968683 | 4.977555 | 4.499449 | 4.166872 | 4.503954 | 5.835037 | 6.699794 |
min | 0.670000 | 0.210000 | 1.500000 | 0.000000 | 0.130000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.040000 | 0.130000 | 0.670000 |
50% | 11.710000 | 10.170000 | 10.920000 | 5.750000 | 9.960000 | 6.830000 | 9.210000 | 8.080000 | 8.170000 | 8.290000 | 12.500000 | 15.000000 |
max | 35.800000 | 33.370000 | 33.840000 | 28.460000 | 37.540000 | 26.160000 | 30.370000 | 31.080000 | 25.880000 | 28.210000 | 42.380000 | 42.540000 |
代码如下:
day_stats = pd.DataFrame()
day_stats['min'] = data.min(axis = 1)
day_stats['max'] = data.max(axis = 1)
day_stats['mean'] = data.mean(axis = 1)
day_stats['std'] = data.std(axis = 1)
day_stats.head()
输出结果如下:
min | max | mean | std | |
---|---|---|---|---|
Yr_Mo_Dy | ||||
1961-01-01 | 9.29 | 18.50 | 13.018182 | 2.808875 |
1961-01-02 | 6.50 | 17.54 | 11.336364 | 3.188994 |
1961-01-03 | 6.17 | 18.50 | 11.641818 | 3.681912 |
1961-01-04 | 1.79 | 11.75 | 6.619167 | 3.198126 |
1961-01-05 | 6.17 | 13.33 | 10.630000 | 2.445356 |
代码如下:
data.loc[data.index.month == 1].mean()
输出结果如下:
RPT 14.847325
VAL 12.914560
ROS 13.299624
KIL 7.199498
SHA 11.667734
BIR 8.054839
DUB 11.819355
CLA 9.512047
MUL 9.543208
CLO 10.053566
BEL 14.550520
MAL 18.028763
dtype: float64
代码如下:
# pd.Period()创建时期数据
# pd.Period()参数:一个时间戳 + freq 参数 → freq 用于指明该 period 的长度,时间戳则说明该 period 在时间轴上的位置
# DatetimeIndex对象的数据转换为PeriodIndex
data.groupby(data.index.to_period('A')).mean()
输出结果如下:
RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yr_Mo_Dy | ||||||||||||
1961 | 12.299583 | 10.351796 | 11.362369 | 6.958227 | 10.881763 | 7.729726 | 9.733923 | 8.858788 | 8.647652 | 9.835577 | 13.502795 | 13.680773 |
1962 | 12.246923 | 10.110438 | 11.732712 | 6.960440 | 10.657918 | 7.393068 | 11.020712 | 8.793753 | 8.316822 | 9.676247 | 12.930685 | 14.323956 |
1963 | 12.813452 | 10.836986 | 12.541151 | 7.330055 | 11.724110 | 8.434712 | 11.075699 | 10.336548 | 8.903589 | 10.224438 | 13.638877 | 14.999014 |
1964 | 12.363661 | 10.920164 | 12.104372 | 6.787787 | 11.454481 | 7.570874 | 10.259153 | 9.467350 | 7.789016 | 10.207951 | 13.740546 | 14.910301 |
1965 | 12.451370 | 11.075534 | 11.848767 | 6.858466 | 11.024795 | 7.478110 | 10.618712 | 8.879918 | 7.907425 | 9.918082 | 12.964247 | 15.591644 |
1966 | 13.461973 | 11.557205 | 12.020630 | 7.345726 | 11.805041 | 7.793671 | 10.579808 | 8.835096 | 8.514438 | 9.768959 | 14.265836 | 16.307260 |
1967 | 12.737151 | 10.990986 | 11.739397 | 7.143425 | 11.630740 | 7.368164 | 10.652027 | 9.325616 | 8.645014 | 9.547425 | 14.774548 | 17.135945 |
1968 | 11.835628 | 10.468197 | 11.409754 | 6.477678 | 10.760765 | 6.067322 | 8.859180 | 8.255519 | 7.224945 | 7.832978 | 12.808634 | 15.017486 |
1969 | 11.166356 | 9.723699 | 10.902000 | 5.767973 | 9.873918 | 6.189973 | 8.564493 | 7.711397 | 7.924521 | 7.754384 | 12.621233 | 15.762904 |
1970 | 12.600329 | 10.726932 | 11.730247 | 6.217178 | 10.567370 | 7.609452 | 9.609890 | 8.334630 | 9.297616 | 8.289808 | 13.183644 | 16.456027 |
1971 | 11.273123 | 9.095178 | 11.088329 | 5.241507 | 9.440329 | 6.097151 | 8.385890 | 6.757315 | 7.915370 | 7.229753 | 12.208932 | 15.025233 |
1972 | 12.463962 | 10.561311 | 12.058333 | 5.929699 | 9.430410 | 6.358825 | 9.704508 | 7.680792 | 8.357295 | 7.515273 | 12.727377 | 15.028716 |
1973 | 11.828466 | 10.680493 | 10.680493 | 5.547863 | 9.640877 | 6.548740 | 8.482110 | 7.614274 | 8.245534 | 7.812411 | 12.169699 | 15.441096 |
1974 | 13.643096 | 11.811781 | 12.336356 | 6.427041 | 11.110986 | 6.809781 | 10.084603 | 9.896986 | 9.331753 | 8.736356 | 13.252959 | 16.947671 |
1975 | 12.008575 | 10.293836 | 11.564712 | 5.269096 | 9.190082 | 5.668521 | 8.562603 | 7.843836 | 8.797945 | 7.382822 | 12.631671 | 15.307863 |
1976 | 11.737842 | 10.203115 | 10.761230 | 5.109426 | 8.846339 | 6.311038 | 9.149126 | 7.146202 | 8.883716 | 7.883087 | 12.332377 | 15.471448 |
1977 | 13.099616 | 11.144493 | 12.627836 | 6.073945 | 10.003836 | 8.586438 | 11.523205 | 8.378384 | 9.098192 | 8.821616 | 13.459068 | 16.590849 |
1978 | 12.504356 | 11.044274 | 11.380000 | 6.082356 | 10.167233 | 7.650658 | 9.489342 | 8.800466 | 9.089753 | 8.301699 | 12.967397 | 16.771370 |
代码如下:
data.groupby(data.index.to_period('M')).mean().head()
输出结果如下:
RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yr_Mo_Dy | ||||||||||||
1961-01 | 14.841333 | 11.988333 | 13.431613 | 7.736774 | 11.072759 | 8.588065 | 11.184839 | 9.245333 | 9.085806 | 10.107419 | 13.880968 | 14.703226 |
1961-02 | 16.269286 | 14.975357 | 14.441481 | 9.230741 | 13.852143 | 10.937500 | 11.890714 | 11.846071 | 11.821429 | 12.714286 | 18.583214 | 15.411786 |
1961-03 | 10.890000 | 11.296452 | 10.752903 | 7.284000 | 10.509355 | 8.866774 | 9.644194 | 9.829677 | 10.294138 | 11.251935 | 16.410968 | 15.720000 |
1961-04 | 10.722667 | 9.427667 | 9.998000 | 5.830667 | 8.435000 | 6.495000 | 6.925333 | 7.094667 | 7.342333 | 7.237000 | 11.147333 | 10.278333 |
1961-05 | 9.860968 | 8.850000 | 10.818065 | 5.905333 | 9.490323 | 6.574839 | 7.604000 | 8.177097 | 8.039355 | 8.499355 | 11.900323 | 12.011613 |
代码如下:
data.groupby(data.index.to_period('W')).mean().head()
输出结果如下:
RPT | VAL | ROS | KIL | SHA | BIR | DUB | CLA | MUL | CLO | BEL | MAL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yr_Mo_Dy | ||||||||||||
1960-12-26/1961-01-01 | 15.040000 | 14.960000 | 13.170000 | 9.290000 | NaN | 9.870000 | 13.670000 | 10.250000 | 10.830000 | 12.580000 | 18.500000 | 15.040000 |
1961-01-02/1961-01-08 | 13.541429 | 11.486667 | 10.487143 | 6.417143 | 9.474286 | 6.435714 | 11.061429 | 6.616667 | 8.434286 | 8.497143 | 12.481429 | 13.238571 |
1961-01-09/1961-01-15 | 12.468571 | 8.967143 | 11.958571 | 4.630000 | 7.351429 | 5.072857 | 7.535714 | 6.820000 | 5.712857 | 7.571429 | 11.125714 | 11.024286 |
1961-01-16/1961-01-22 | 13.204286 | 9.862857 | 12.982857 | 6.328571 | 8.966667 | 7.417143 | 9.257143 | 7.875714 | 7.145714 | 8.124286 | 9.821429 | 11.434286 |
1961-01-23/1961-01-29 | 19.880000 | 16.141429 | 18.225714 | 12.720000 | 17.432857 | 14.828571 | 15.528571 | 15.160000 | 14.480000 | 15.640000 | 20.930000 | 22.530000 |
代码如下:
# data.groupby(data.index.to_period('1961-01-02', 'W')).describe(percentiles=[]).head()
weekly = data.resample('W').agg(['min', 'max', 'mean', 'std']) # resample()重新设置频率采样,再sh
weekly.loc[weekly.index[1:53], "RPT":"MAL"].head(10)
输出结果如下:
RPT | VAL | ROS | ... | CLO | BEL | MAL | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | max | mean | std | min | max | mean | std | min | max | ... | mean | std | min | max | mean | std | min | max | mean | std | |
Yr_Mo_Dy | |||||||||||||||||||||
1961-01-08 | 10.58 | 18.50 | 13.541429 | 2.631321 | 6.63 | 16.88 | 11.486667 | 3.949525 | 7.62 | 12.33 | ... | 8.497143 | 1.704941 | 5.46 | 17.54 | 12.481429 | 4.349139 | 10.88 | 16.46 | 13.238571 | 1.773062 |
1961-01-15 | 9.04 | 19.75 | 12.468571 | 3.555392 | 3.54 | 12.08 | 8.967143 | 3.148945 | 7.08 | 19.50 | ... | 7.571429 | 4.084293 | 5.25 | 20.71 | 11.125714 | 5.552215 | 5.17 | 16.92 | 11.024286 | 4.692355 |
1961-01-22 | 4.92 | 19.83 | 13.204286 | 5.337402 | 3.42 | 14.37 | 9.862857 | 3.837785 | 7.29 | 20.79 | ... | 8.124286 | 4.783952 | 6.50 | 15.92 | 9.821429 | 3.626584 | 6.79 | 17.96 | 11.434286 | 4.237239 |
1961-01-29 | 13.62 | 25.04 | 19.880000 | 4.619061 | 9.96 | 23.91 | 16.141429 | 5.170224 | 12.67 | 25.84 | ... | 15.640000 | 3.713368 | 14.04 | 27.71 | 20.930000 | 5.210726 | 17.50 | 27.63 | 22.530000 | 3.874721 |
1961-02-05 | 10.58 | 24.21 | 16.827143 | 5.251408 | 9.46 | 24.21 | 15.460000 | 5.187395 | 9.04 | 19.70 | ... | 9.460000 | 2.839501 | 9.17 | 19.33 | 14.012857 | 4.210858 | 7.17 | 19.25 | 11.935714 | 4.336104 |
1961-02-12 | 16.00 | 24.54 | 19.684286 | 3.587677 | 11.54 | 21.42 | 16.417143 | 3.608373 | 13.67 | 21.34 | ... | 14.440000 | 1.746749 | 15.21 | 26.38 | 21.832857 | 4.063753 | 17.04 | 21.84 | 19.155714 | 1.828705 |
1961-02-19 | 6.04 | 22.50 | 15.130000 | 5.064609 | 11.63 | 20.17 | 15.091429 | 3.575012 | 6.13 | 19.41 | ... | 13.542857 | 2.531361 | 14.09 | 29.63 | 21.167143 | 5.910938 | 10.96 | 22.58 | 16.584286 | 4.685377 |
1961-02-26 | 7.79 | 25.80 | 15.221429 | 7.020716 | 7.08 | 21.50 | 13.625714 | 5.147348 | 6.08 | 22.42 | ... | 12.730000 | 4.920064 | 9.59 | 23.21 | 16.304286 | 5.091162 | 6.67 | 23.87 | 14.322857 | 6.182283 |
1961-03-05 | 10.96 | 13.33 | 12.101429 | 0.997721 | 8.83 | 17.00 | 12.951429 | 2.851955 | 8.17 | 13.67 | ... | 12.370000 | 1.593685 | 11.58 | 23.45 | 17.842857 | 4.332331 | 8.83 | 17.54 | 13.951667 | 3.021387 |
1961-03-12 | 4.88 | 14.79 | 9.376667 | 3.732263 | 8.08 | 16.96 | 11.578571 | 3.230167 | 7.54 | 16.38 | ... | 10.458571 | 3.655113 | 10.21 | 22.71 | 16.701429 | 4.358759 | 5.54 | 22.54 | 14.420000 | 5.769890 |
10 rows × 48 columns
今天的pandas题更新,继续刷题,加油!