- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- 干货|自我介绍这三个坑,99%的概率你踩过!
夏麦生命的魔术师
自我介绍——每个人都需要的一张名片。图片源自网络从2018年到现在,在做演讲俱乐部的2年时间里,我在演讲活动现场听过1000+人的自我介绍,自我介绍做得超棒的人真不多!最近,我花了近几个月时间,仔细研究了500+人线上场景的自我介绍,发现优秀的自我介绍也不多!为什么做一张优秀的自我介绍就这么难呢?这个问题,在我帮几十个人打造了自我介绍的过程一直困扰着我。经过了几个月的时间思考与实践,终于发现三个—
- 防不胜防的宝宝湿疹竟然因为这样做而渐渐消除。。。
xinju8830
宝宝在未满一周岁之前很容易罹患湿疹,婴儿湿疹是一种过敏性皮肤炎症,1-3个月的婴儿出生后就可以发现。南方婴儿湿疹在春夏季是高发季节,北方婴儿湿疹高发季在春秋时节。因为婴儿患湿疹的环境因素最主要是潮湿、阴暗造成的,南方的春夏最为潮湿,所以婴儿患湿疹的概率也就增加。能够引起婴幼儿湿疹的因素除了环境因素之外,还有遗传、饮食等多方因素,令家长防不胜防。那么在孩子出现了湿疹的症状时,妈妈们都应该怎么做?如何
- 经济金融学公开课学习总汇(九)
佳佳爱科技AITech
本章内容:1.什么是金融风险2.什么是风险偏好与满意度,人都是风险厌恶吗3.单一投资还是多元投资4.无差别曲线金融风险:金融风险是指金融变量的各种可能值偏离期望的可能性以及幅度,所以风险不是说,一定会发生概率的亏损或者偏离回报,它也有可能发生超额的回报作为理财的投资人,我们一般只关注系统风险(经济环境不好造成房市大跌等)。还有非系统性风险(购买理财,卷款跑路等)。其中系统风险是可分散的风险;后者是
- 数据库系统 第53节 数据库并发控制
hummhumm
数据库oraclepythonjavadatabasesql后端
数据库并发控制是确保在多个用户或进程同时访问数据库时,数据的完整性和一致性得到维护的一种机制。并发控制技术主要分为两大类:乐观并发控制和悲观并发控制。下面将详细叙述这两种技术,以及多版本并发控制(MVCC),这是一种在数据库系统中广泛使用的并发控制方法。乐观并发控制(OptimisticConcurrencyControl,OCC)乐观并发控制的核心思想是假设事务之间的冲突发生的概率较低,因此它允
- 架构师备考的一些思考(三)
kiba518
网络
前言这个考题的大部分内容,我感觉都是我们会的,但所有的考题都穿上了马甲,穿上马甲我们就不好认了,而且如果是一个两个人穿马甲,还好推断,如果1000人穿马甲,你识别的概率就会急速下降。有些题的内容则是即无法识别,也无法背,因为它也没有个前因后果,完全是出题人拍脑袋想的,所以,这种题我们是无法通过知识来判断的,因为用知识来判断,你会发现,四个选项全是正确的,这时我们可以采用逐字读题法,就是一个字一个字
- 红源随笔
红源随笔
2020年3月26日红源悟语自我觉醒:想都是问题;做才是答案!今日成长健身的本质诉求,是让你在高强度的工作中游刃有余,在工作之外还有精力去享受生活。今日感悟在这个信息爆炸、竞争激烈的全球化时代,谁的精力充沛,谁在竞争中胜出的概率就更高。
- 关于灵感的一些想法
高温若寒的坚持
灵感是个稍纵即逝的东西,如果不好好抓住,只能与它挥手告别。相信我们都有过这样的时刻,走着走着路或者吃着吃着饭时一个想法的出现,那就是灵感的再现。灵感虽然是个可遇不可求的东西,但我们可以通过一些途径增加灵感出现的概率。1.多和别人聊天。相信大家都知道《聊斋志异》这部作品,而蒲松龄创作这部小说的灵感多来自于与周围人的聊天之中。我们如果想增加灵感出现的概率,就要多和身边的人聊聊天,特别是和优秀的榜样人物
- adb有线连接正常,adb connect失败
cheri--
adbandroid
adbconnect失败1.确认两个设备在同一个局域网2.确认此网络是否有adb连接的权限(有的公司网络不允许adb)3.确认防火墙设置如果前面3步都确认没问题,Pingip也能成功,那么有可能就是端口的问题:step1:先用有线连接设备,执行adbtcpip5555step2:拔掉有线step3:adbconnect192.168.1.105这样大概率就能成功了
- python-opencv cv2.findContours()函数
fjswcjswzy
opencvpython笔记pythonopencv
示例代码:image,contours,hierarchy=cv2.findContours(contour,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)输入:contour:带有轮廓信息的图像;cv2.RETR_TREE:提取轮廓后,输出轮廓信息的组织形式,除了cv2.RETR_TREE还有以下几种选项:cv2.RETR_EXTERNAL:输出轮廓中只有外侧轮廓信
- python如何判断NoneTpye
#如花
opencv人工智能计算机视觉python
python如何判断NoneTpye最近用python-opencv解析多个视频文件,解析到第一个视频的最后一帧,出现了NoneTpye报错为了让循环继续,需要判断解析出来的图片是否为NoneType。试了几种方法#第一种方法img==None当img为空时,表达式为True。但是当img解析出了图片时,返回的是一个array,大小和img一致。正确写法imgisNone用isNone判断None
- Ihandy Unity开发 面试题 2024
z2014z
面试职场和发展
1.当i>10时,调用test是否会出现死锁?原因是什么?voidtest(inti){lock(this){if(i>10){i--;test(i);}}}2.有一个表有n条记录,每条记录有两个字段,weight和id,写出程序保证id出现的概率与权重相同3.从1到n,一共有多少个14.二叉树的层次遍历5.给定两个链表,将对应数值相加6.检查两棵树是否相同
- 如何获得巨大的成功
心水
什么是巨大的成功?举个例子,你赢得了一家客户算是小小的成功,你赢得100家客户就算是巨大的成功,巨大的成功会让你感觉到质变、跃迁和震撼的感觉。要获得巨大的成功虽然很难,但并不是不可能的,做好下面四点能大幅提高获得巨大成功的概率。1.将一个因素最大化。以微信的巨大成功为例,这个因素是什么呢?我觉得是张小龙和微信团队对一个好产品原则的坚守。第一条,好的产品是有创意的,它必须是一个创新的东西;第二条,好
- 【系统架构设计】系统的可靠性分析与设计
傻傻虎虎
系统架构设计系统架构系统安全
【系统架构设计】系统的可靠性分析与设计可靠性概述系统故障模型系统配置方法组成结构功能与应用场景技术含量与成本系统可靠性可靠性概述这里有几个名词要做好区分,可靠度是某一个时间区间内能正常运行的概率;可用度是某一时刻可运行的概率;可维度是指系统失效后,在时间间隔内被修复的概率;平均无故障时间是从0时开始到故障发生时,系统的持续运行时间的期望值;平均故障修复时间就是字面意思;平均故障间隔时间是
- 成功学不能学
润物老师
成功是一个小概率事件,混得太惨也是。大部分人,还是过着不太成功不太失败的日子。如果我们要修理一辆汽车,你会只坚持用扳手,不用螺丝刀么?我们既可以用扳手,也可以用螺丝刀。关键是,目标是把车修好。要点拆解一、成功永远是小概率事件通过对炼金术的案例,以及数学中的正态分布曲线,即无论什么群体,随机变量的概率分布大多数总会停留在某一个值前后,离这个值越远,出现的概率越少。来说明,成功也是个小概率事件,混的太
- 2021年3月11日复盘:第二次企稳信号!
老威期权说
今天大会闭幕,沪指数据收敛,大盘借机上破强阻力位3410点,并以最高点收光头光脚阳线,下未触及支撑位,发出短期企稳信号!这是年后高点下跌以来第二次发出企稳信号!上一次发出企稳信号是3月1日!结果2号大跌后、3号大涨、4日又开始下跌!根据我们的理解,企稳信号发出后,再下跌才是低买时机;不跌继续涨的话,就要注意冲高后的风险!明天周五,周五走势大概率都和下周行情负相关,即周五好看,下周要小心;周五难看,
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习概率潜在语义分析PLSA
定义输入:设单词集合为W={ω1,ω2,⋯ ,ωM}W=\{\omega_1,\omega_2,\cdots,\omega_M\}W={ω1,ω2,⋯,ωM},文本集合为D={d1,d2,⋯ ,dN}D=\{d_1,d_2,\cdots,d_N\}D={d1,d2,⋯,dN},话题集合为Z={z1,z2,⋯ ,zN}Z=\{z_1,z_2,\cdots,z_N\}Z={z1,z2,⋯,zN},共现
- SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World
Terry Cao 漕河泾
3d人工智能计算机视觉目标跟踪
基于区域的方法在基于模型的单目3D跟踪无纹理物体的复杂场景中变得越来越流行。然而,尽管它们能够实现最先进的结果,大多数方法的计算开销很大,需要大量资源来实时运行。在下文中,我们基于之前的工作,开发了SRT3D,这是一种稀疏的基于区域的3D物体跟踪方法,旨在弥合效率上的差距。我们的方法在所谓的对应线(这些线模型化了物体轮廓位置的概率)上稀疏地考虑图像信息。由此,我们改进了当前的技术,并引入了考虑定义
- 婚前没有满足男人的“择爱观”,婚后老公出轨的概率会变高
文秀木子
相信很多女孩子会听过这样的话:你这样的女人适合过日子,可以娶回家当老婆;你这样的女人适合谈恋爱,但不适合过日子,不能娶回家的。成熟理性的男人,对于选女朋友和选老婆,标准是不一样的,我希望正在恋爱或者准备恋爱的姑娘们能明白这一点。在这里,我先和大家分享两组概念:一是短择和长择;二是择爱观和择偶观。短择和长择:短择,顾名思义,就是短期择偶。男人只是想和你玩一玩,玩腻了就抛弃,他并不打算和你发展长期稳定
- 概率图模型(PGM)综述
医学影像处理
概率图模型概率图模型综述
RefLink:http://www.sigvc.org/bbs/thread-728-1-1.htmlGraphicalModel的基本类型基本的GraphicalModel可以大致分为两个类别:贝叶斯网络(BayesianNetwork)和马尔可夫随机场(MarkovRandomField)。它们的主要区别在于采用不同类型的图来表达变量之间的关系:贝叶斯网络采用有向无环图(DirectedAc
- 写作界的火云邪神,一篇标题甩出来,打破你的思维定势
晓菲悦读
砍柴书院&写作营丹老师在开营的时候说:“作为五年的新媒体编辑,在接下来的这一个月的时间里,我能为大家提供的帮助是,关于写作的建议,文章的优化,以及思维力的变化。”丹老师的每一节课都有趣、有料,有浅显易懂的理论,有恰如其分的例子。让我们在欢乐轻松的氛围中听的懂,学的会。4月27日上的是标题课——《如何写出不影响调性,又能打开概率高的标题》(上课前,教导主任“小鹿波比”就喊我们:“今晚上有热情的互动,
- 处于苍蝇模式,寻找蜜蜂模式
雷宇plus
对于我这个七零后生人,即将步入知命之年年龄的人来说,选择一项下一辈子靠谱的职业确实是一个极其慎重和重要的事。虽说我也读过《百年人生》,按照目前医学科学技术的发展进步,这一代的人也许能够活到八十到一百岁,五十上下的年龄也就是中青年。但不可否认的是,相比于年轻人,除了在智力、经验上不输之外,在人体机能和精力上确实再走下坡路,这是不容辩解的,虽说这个年龄段有少量的人的体力和精力很好,但要看概率,用概率这
- 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习潜在狄利克雷分配LDA
定义输入:单词集合W={ω1,⋯ ,ωv,⋯ ,ωV},其中ωv是第v个单词,v=1,2,⋯ ,V,V是单词第个数。单词集合W=\{\omega_1,\cdots,\omega_v,\cdots,\omega_V\},其中\omega_v是第v个单词,v=1,2,\cdots,V,V是单词第个数。单词集合W={ω1,⋯,ωv,⋯,ωV},其中ωv是第v个单词,v=1,2,⋯,V,V是单词第个数。文
- 卷积神经网络(CNN)详细介绍及其原理详解(二)
FFmpeg123
Pytorchcnn深度学习人工智能
接上一文继续;五、全连接层假设还是上面人的脑袋的示例,现在我们已经通过卷积和池化提取到了这个人的眼睛、鼻子和嘴的特征,如果我想利用这些特征来识别这个图片是否是人的脑袋该怎么办呢?此时我们只需要将提取到的所有特征图进行“展平”,将其维度变为1×x1×x1×x,这个过程就是全连接的过程。也就是说,此步我们将所有的特征都展开并进行运算,最后会得到一个概率值,这个概率值就是输入图片是否是人的概率,这个过程
- 可惜我还是很喜欢你(10)
陈奶盖
陈奶盖135有次不太高兴,跟夏来说我奶奶不喜欢我因为重男轻女,所以我奶奶对我和我妈妈都不好,我很怕以后遇到这样的婆婆。他很温柔的跟我说,他妈妈是很好的人,他奶奶也是,我不会有这样的苦恼的。......现在想起来,就也挺难过。136我俩的大学不是在厦门嘛,我是福建人他不是。有次聊到什么,我跟他说可能大概率我以后会回福州工作吧。他问我为什么,(因为我也不是福州人。)“因为家里在福州有房子,我父母给我买
- 美
欧阳星羽
试问,谁又会拒绝美、变得更美呢?故事父子俩见一辆豪车驶来,儿子说:开这种车的人,肚子里一定没什么文化。父亲:说这种话的人,兜里一定没有钱。好看的皮囊千篇一律,有趣的灵魂万里挑一,说这句话的人,大概率没有一副好看的皮囊。绝杀但凡好看的皮囊再加上那么一点优点,就能组成绝杀!+才,集美貌与才华于一身;+财,无往不利;+德,人美心善;……没有比外貌更能万搭的品质了,绝无仅有。美就像一个超级放大镜,任何优点
- 日记2021-3-8
思考z
今天开课第一天,对于今天的目标完成的还不错早上起床赖了一下,下午去图书馆呆了2个多小时,晚自习看了概率论与统计学,单词:talent天赋,才能,thick厚的,obstacleto对……障碍,introduce介绍,传入,thin瘦的,稀薄的,thorough彻底的,完全的,occurredto想到,invent发明,throat喉咙,ofcourse当然,thunder雷,雷声,tide潮汐,o
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 软考高项-信息系统项目管理师-必考知识点1
围城客
软考软考信息系统项目管理师
NO1、制定成本预算的步骤(1)将项目总成本分摊到项目工作分解结构的各个工作包(2)将各个工作包成本再分配到该工作包所包含的各项活动上(3)确定各项成本预算支出的时间计划及项目成本预算计划PS:1、分到工作包2、分到工作包中的活动3、确定各项成本指定预算NO2、定性风险分析的方法定性风险分析的技术方法有风险概率与影响评估法、概率和影响矩阵、风险紧迫性评估等PS:概率与影响评估法经常考到,容易与定量
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理