整理 | AI科技大本营
出品 | AI科技大本营(公众号id:rgznai100)
【导语】正值求职、跳槽季,无论你是换工作还是找实习,没有真本事都是万万不行的,可是如何高效率复习呢?之前我们给大家推荐了一份 Python 面试宝典,收藏了近 300 道面试题,今天为为家精心准备了一份 AI相关岗位的面试题,帮大家扫清知识盲点,自信上场!
1、你会在时间序列数据集上使用什么交叉验证技术?是用k倍或LOOCV?
2、你是怎么理解偏差方差的平衡的?
3、给你一个有1000列和1百万行的训练数据集,这个数据集是基于分类问题的。经理要求你来降低该数据集的维度以减少模型计算时间,但你的机器内存有限。你会怎么做?
4、全球平均温度的上升导致世界各地的海盗数量减少。这是否意味着海盗的数量减少引起气候变化?
5、给你一个数据集,这个数据集有缺失值,且这些缺失值分布在离中值有1个标准偏差的范围内。百分之多少的数据不会受到影响?为什么?
6、你意识到你的模型受到低偏差和高方差问题的困扰。那么,应该使用哪种算法来解决问题呢?为什么?
7、协方差和相关性有什么区别?
8、真阳性率和召回有什么关系?写出方程式。
9、Gradient boosting算法(GBM)和随机森林都是基于树的算法,它们有什么区别?
10、你认为把分类变量当成连续型变量会更得到一个更好的预测模型吗?
11:“买了这个的客户,也买了......”亚马逊的建议是哪种算法的结果?
12、在k-means或kNN,我们是用欧氏距离来计算最近的邻居之间的距离。为什么不用曼哈顿距离?
13、我知道校正R2或者F值是用来评估线性回归模型的。那用什么来评估逻辑回归模型?
14、为什么朴素贝叶斯如此“朴素”?
15、花了几个小时后,现在你急于建一个高精度的模型。结果,你建了5 个GBM(Gradient Boosted Models),想着boosting算法会展现“魔力”。不幸的是,没有一个模型比基准模型表现得更好。最后,你决定将这些模型结合到一起。尽管众所周知,结合模型通常精度高,但你就很不幸运。你到底错在哪里?
以上题目答案详解:https://www.tinymind.cn/articles/109【推荐收藏】机器学习教材中的 7 大经典问题https://www.tinymind.cn/articles/83
工作中的算法工程师,很多时候,会将生活中转瞬即逝的灵感,付诸产品化。
将算法研究应用到工作中,与纯粹的学术研究有着一点最大的不同,即需要从用户的角度思考问题。很多时候,你需要明确设计的产品特征、提升的数据指标,是不是能真正迎合用户的需求,这便要求算法工程师能在多个模型间选择出最合适的那个,然后通过快速迭代达到一个可以走向产品化的结果。知识储备作为成功的根底亦必不可少,以下是营长为你精选的算法面试,帮你检查下自己的技能是否在线。
1. LDA(线性判别分析) 和 PCA 的区别与联系
2. K-均值算法收敛性的证明
3. 如何确定 LDA (隐狄利克雷模型) 中主题的个数
4. 随机梯度下降法的一些改进算法
5. L1正则化产生稀疏性的原因
6. 如何对贝叶斯网络进行采样
7. 从方差、偏差角度解释 Boosting 和 Bagging
8. ResNet的提出背景和核心理论
9. LSTM是如何实现长短期记忆功能的
10. WGAN解决了原始 GAN 中的什么问题
以上题目答案详解:https://www.tinymind.cn/articles/1275【推荐收藏】是男人就过8题!楼教主出题,请接招https://www.tinymind.cn/articles/47算法和编程面试题精选TOP50!(附代码+解题思路+答案)https://www.tinymind.cn/articles/3759
1.什么是深度学习?为什么它会如此受欢迎?
3.深度学习与机器学习有什么区别?
4.深度学习的先决条件是什么?
5.选择哪些工具/语言构建深度学习模型?
6.为什么构建深度学习模型需要使用GPU?
7.何时(何处)应用神经网络?
8.是否需要大量数据来训练深度学习模型?
9.哪里可以找到一些基本的深度学习项目用来练习?
10.深度学习的一些免费学习资源
最后附上深度学习的相关面试问题有哪些?
(1)深度学习模型如何学习? (2)深度学习模型有哪些局限性? (3)前馈神经网络和递归神经网络之间有什么区别? (4)什么是激活特征函数? (5)什么是CNN,它有什么用途? (6)什么是池化? 简述其工作原理。 (7)什么是dropout层,为什么要用dropout层? (8)什么是消失梯度问题,如何克服? (9)什么是优化函数?说出几个常见的优化函数。
以上题目答案详解:https://www.tinymind.cn/articles/608
https://www.tinymind.cn/articles/3987
https://www.tinymind.cn/articles/3768
1、求导1/x。
2、画出log (x+10)曲线。
3、怎样设计一次客户满意度调查?
4、一枚硬币抛10次,得到8正2反。试析抛硬币是否公平?p值是多少?
5、接上题。10枚硬币,每一枚抛10次,结果会如何?为了抛硬币更公平,应该怎么改进?
6、解释一个非正态分布,以及如何应用。
7、为什么要用特征选择?如果两个预测因子高度相关,系数对逻辑回归有怎样的影响?系数的置信区间是多少?
8、K-mean与高斯混合模型:K-means算法和EM算法的差别在哪里?
9、使用高斯混合模型时,怎样判断它适用与否?(正态分布)
10、聚类时标签已知,怎样评估模型的表现?
11、为什么不用逻辑回归,而要用GBM?
12、每年应聘Google的人有多少?
13、你给一个Google APP做了些修改。怎样测试某项指标是否有增长
14、描述数据分析的流程。
15、高斯混合模型 (GMM) 中,推导方程。
16、怎样衡量用户对视频的喜爱程度?
17、模拟一个二元正态分布。
18、求一个分布的方差。
19、怎样建立中位数的Estimator?
20、如果回归模型中的两个系数估计,分别是统计显著的,把两个放在一起测试,会不会同样显著?
以上题目答案详解:https://www.tinymind.cn/articles/98
1、有成千上万个用户,每个用户都有 100 个交易,在 10000 个产品和小组中,用户所参与有意义的部分,你是如何处理这一问题的?
2、为了消除欺诈行为,我们对这些数据进行预筛选,如何才能找到一个数据样本,帮助我们判断一个欺诈行为的真实性?
3、给出两个表格,一个表格用来存储用户 ID 以及购买产品 ID(为1个字节),另一个表格则存储标有产品名称的产品 ID。我们尝试寻找被同一用户同时购买的这样一个成对的产品,像葡萄酒和开瓶器,薯片和啤酒。那么,如何去寻找前 100 个同时存在且成对出现的产品?
4、详细描述 L1 正则化和 L2 正则化二者之间的区别,特别是它们本身对模型训练过程的影响有什么不同?
5、假设你有 10 万个存储在不同服务器上的文件,你想对所有的文件进行加工,那么用 Hadoop 如何处理?
6、Python 和 Scala 之间有什么区别?
7、解释一下 LRU Cache 算法。
8、如何设计一个客户——服务器模型,客服端每分钟都可以发送位置数据。
9、如何将数据从一个 Hadoop 聚类传递给另一个 Hadoop 聚类?
10、Java 中的内存有哪些不同的类型?
11、你是如何处理数百个标题中的元数据这一繁琐任务的?
12、在数据流和可访问性方面,如何在隐藏时间帧内进行测量?其中在隐藏时间帧内,核心超负荷将计算机能量重定向到 cellar dome 的过度复杂文件系统的边界结构。
13、你最希望拥有的超能力是什么?
14、如果你有一个时间序列传感器,请预测其下一个读数。
15、使用 SQL 创建 market basket 输出。
16、你有没有过心理物理学实验的经验?(Research Portfolio based question)
17、你在表征方法上的专长是什么?通常使用什么?你是如何在研究中使用它,有没有什么有趣的结果?(Research Portfolio based question)
18、如何进行故障分析?
19、检查一个二叉树是否为左右子树上的镜像。
20、什么是随机森林?为什么朴素贝叶斯效果更好?
以上题目答案详解:https://www.tinymind.cn/articles/139
大家可在详解页面查找以上所有问题的答案,面试除了运气,更多还是需要扎实的基本功。努力刷题吧,祝大家都能所向披靡,顺利进入心仪的公司~
(本文为 AI科技大本营整理文章,转载请微信联系 1092722531)