MobileNet与HybridSN 高光谱图像分类

目录

一、MobileNet

1.MobileNet V1

2.MobileNet V2

3.MobileNet V3

二、HybridSN高光谱图像分类

三、思考


一、MobileNet

1.MobileNet V1

传统卷积神经网络,内存需求大,运算量大,导致无法在移动设备以及嵌入式设备上运行。

MobileNet网络专注于移动端或嵌入式设备中的轻量级CNN网络,相比于传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量,相比于VGG16准确率减少0.9%,但是模型参数只有VGG的1/32。

MobileNet网络中的亮点:

  • Depthwise Convolution(大大减少运算量和参数数量)
  • 增加超参数\alpha\beta(\alpha控制卷积核个数,\beta控制输入图片的大小,这两个参数是人为设定的)

 传统卷积与DW卷积的区别:

MobileNet与HybridSN 高光谱图像分类_第1张图片

 通常DW卷积与PW卷积放在一起使用:

MobileNet与HybridSN 高光谱图像分类_第2张图片

 理论上普通卷积计算量是DW+PW的8到9倍。

2.MobileNet V2

MobileNet V2相比于MobileNet V1准确率更高,模型更小。

网络中的亮点:

  • Inverted Residuals(倒残差结构)
  • Linear Bottlenecks

MobileNet与HybridSN 高光谱图像分类_第3张图片

 MobileNet V2使用的是ReLU6激活函数:

MobileNet与HybridSN 高光谱图像分类_第4张图片

 MobileNet V2中倒残差结构如下:

MobileNet与HybridSN 高光谱图像分类_第5张图片

 当stride=1且输入特征矩阵与输出特征矩阵shape相同时才有shortcut连接。

3.MobileNet V3

网络亮点:

  • 更新Block(bneck)
  • 使用NAS搜索参数(Neural Architecture Search)
  • 重新设计耗时层结构

 MobileNet V3相比于MobileNet V2更准确,更高效。

MobileNet与HybridSN 高光谱图像分类_第6张图片

 更新Block包括:加入SE模块和更新了激活函数。

 MobileNet与HybridSN 高光谱图像分类_第7张图片

 MobileNet与HybridSN 高光谱图像分类_第8张图片

 重新设计耗时层结构:

1.减少第一个卷积层的卷积核个数(32->16)

2.精简Last Stage

MobileNet与HybridSN 高光谱图像分类_第9张图片

 MobileNet与HybridSN 高光谱图像分类_第10张图片

 重新设计激活函数:

swish(x) = x.\sigma(x)替换为h-swish(x) = x.\frac{ReLU(x+3)}{6}

其中\sigma(x) = \frac{1}{1+e^{-x}}ReLU6(x) = min(max(x,0),6)

二、HybridSN高光谱图像分类

首先取得数据,并引入基本函数库:

! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat
! wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat
! pip install spectral


import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
import spectral
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

 定义HybridSN类:

三维卷积部分:

  • conv1:(1, 30, 25, 25), 8个 7x3x3 的卷积核 ==>(8, 24, 23, 23)
  • conv2:(8, 24, 23, 23), 16个 5x3x3 的卷积核 ==>(16, 20, 21, 21)
  • conv3:(16, 20, 21, 21),32个 3x3x3 的卷积核 ==>(32, 18, 19, 19)

接下来要进行二维卷积,因此把前面的 32*18 reshape 一下,得到 (576, 19, 19)

二维卷积:(576, 19, 19) 64个 3x3 的卷积核,得到 (64, 17, 17)

接下来是一个 flatten 操作,变为 18496 维的向量,

接下来依次为256,128节点的全连接层,都使用比例为0.4的 Dropout,

最后输出为 16 个节点,是最终的分类类别数。

class_num = 16

class HybridSN(nn.Module):
  def __init__(self):
    super(HybridSN, self).__init__()
    # 3D卷积层
    self.conv1 = nn.Conv3d(1, 8, (7, 3, 3))
    self.conv2 = nn.Conv3d(8, 16, (5, 3, 3))
    self.conv3 = nn.Conv3d(16, 32, (3, 3, 3))
    # 2D卷积层
    self.conv4 = nn.Conv2d(576, 64, (3, 3))
    # 全连接层
    self.liner1 = nn.Linear(18496, 256)
    self.liner2 = nn.Linear(256, 128)
    self.liner3 = nn.Linear(128, 16)
    # Dropout
    self.dropout = nn.Dropout(0.4)
    # 激活函数
    self.relu = nn.LeakyReLU()
    self.logsoftmax = nn.LogSoftmax(dim=1)

  def forward(self, x):
    out = self.conv1(x)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.relu(out)
    out = self.conv3(out)
    out = self.relu(out)
    
    out = out.view(-1, out.shape[1]*out.shape[2], out.shape[3], out.shape[4])
    out = self.conv4(out)
    out = self.relu(out)
    
    out = out.view(x.size(0), -1)
    out = self.liner1(out)
    out = self.relu(out)
    out = self.dropout(out)
    out = self.liner2(out)
    out = self.relu(out)
    out = self.dropout(out)
    out = self.liner3(out)
    out = self.logsoftmax(out)
    return out

# 随机输入,测试网络结构是否通
# x = torch.randn(1, 1, 30, 25, 25)
# net = HybridSN()
# y = net(x)
# print(y.shape)

 创建数据集:

首先对高光谱数据实施PCA降维,然后创建keras 方便处理的数据格式;然后随机抽取 10% 数据做为训练集,剩余的做为测试集。

首先定义基本函数:

# 对高光谱数据 X 应用 PCA 变换
def applyPCA(X, numComponents):
    newX = np.reshape(X, (-1, X.shape[2]))
    pca = PCA(n_components=numComponents, whiten=True)
    newX = pca.fit_transform(newX)
    newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
    return newX

# 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
def padWithZeros(X, margin=2):
    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
    x_offset = margin
    y_offset = margin
    newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
    return newX

# 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
    # 给 X 做 padding
    margin = int((windowSize - 1) / 2)
    zeroPaddedX = padWithZeros(X, margin=margin)
    # split patches
    patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
    patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
    patchIndex = 0
    for r in range(margin, zeroPaddedX.shape[0] - margin):
        for c in range(margin, zeroPaddedX.shape[1] - margin):
            patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]   
            patchesData[patchIndex, :, :, :] = patch
            patchesLabels[patchIndex] = y[r-margin, c-margin]
            patchIndex = patchIndex + 1
    if removeZeroLabels:
        patchesData = patchesData[patchesLabels>0,:,:,:]
        patchesLabels = patchesLabels[patchesLabels>0]
        patchesLabels -= 1
    return patchesData, patchesLabels

def splitTrainTestSet(X, y, testRatio, randomState=345):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
    return X_train, X_test, y_train, y_test

读取并创建数据集:

# 地物类别
class_num = 16
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']

# 用于测试样本的比例
test_ratio = 0.90
# 每个像素周围提取 patch 的尺寸
patch_size = 25
# 使用 PCA 降维,得到主成分的数量
pca_components = 30

print('Hyperspectral data shape: ', X.shape)
print('Label shape: ', y.shape)

print('\n... ... PCA tranformation ... ...')
X_pca = applyPCA(X, numComponents=pca_components)
print('Data shape after PCA: ', X_pca.shape)

print('\n... ... create data cubes ... ...')
X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
print('Data cube X shape: ', X_pca.shape)
print('Data cube y shape: ', y.shape)

print('\n... ... create train & test data ... ...')
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
print('Xtrain shape: ', Xtrain.shape)
print('Xtest  shape: ', Xtest.shape)

# 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
Xtest  = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
print('before transpose: Xtrain shape: ', Xtrain.shape) 
print('before transpose: Xtest  shape: ', Xtest.shape) 

# 为了适应 pytorch 结构,数据要做 transpose
Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
Xtest  = Xtest.transpose(0, 4, 3, 1, 2)
print('after transpose: Xtrain shape: ', Xtrain.shape) 
print('after transpose: Xtest  shape: ', Xtest.shape) 


""" Training dataset"""
class TrainDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtrain.shape[0]
        self.x_data = torch.FloatTensor(Xtrain)
        self.y_data = torch.LongTensor(ytrain)        
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

""" Testing dataset"""
class TestDS(torch.utils.data.Dataset): 
    def __init__(self):
        self.len = Xtest.shape[0]
        self.x_data = torch.FloatTensor(Xtest)
        self.y_data = torch.LongTensor(ytest)
    def __getitem__(self, index):
        # 根据索引返回数据和对应的标签
        return self.x_data[index], self.y_data[index]
    def __len__(self): 
        # 返回文件数据的数目
        return self.len

# 创建 trainloader 和 testloader
trainset = TrainDS()
testset  = TestDS()
train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False, num_workers=2)

MobileNet与HybridSN 高光谱图像分类_第11张图片

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 网络放到GPU上
net = HybridSN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

# 开始训练
total_loss = 0
for epoch in range(100):
    for i, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print('[Epoch: %d]   [loss avg: %.4f]   [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))

print('Finished Training')

 MobileNet与HybridSN 高光谱图像分类_第12张图片

 模型测试

count = 0
# 模型测试
for inputs, _ in test_loader:
    inputs = inputs.to(device)
    outputs = net(inputs)
    outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
    if count == 0:
        y_pred_test =  outputs
        count = 1
    else:
        y_pred_test = np.concatenate( (y_pred_test, outputs) )

# 生成分类报告
classification = classification_report(ytest, y_pred_test, digits=4)
print(classification)

MobileNet与HybridSN 高光谱图像分类_第13张图片

 准确率达到了97.83%。

计算各个类准确率:

from operator import truediv

def AA_andEachClassAccuracy(confusion_matrix):
    counter = confusion_matrix.shape[0]
    list_diag = np.diag(confusion_matrix)
    list_raw_sum = np.sum(confusion_matrix, axis=1)
    each_acc = np.nan_to_num(truediv(list_diag, list_raw_sum))
    average_acc = np.mean(each_acc)
    return each_acc, average_acc


def reports (test_loader, y_test, name):
    count = 0
    # 模型测试
    for inputs, _ in test_loader:
        inputs = inputs.to(device)
        outputs = net(inputs)
        outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
        if count == 0:
            y_pred =  outputs
            count = 1
        else:
            y_pred = np.concatenate( (y_pred, outputs) )

    if name == 'IP':
        target_names = ['Alfalfa', 'Corn-notill', 'Corn-mintill', 'Corn'
                        ,'Grass-pasture', 'Grass-trees', 'Grass-pasture-mowed', 
                        'Hay-windrowed', 'Oats', 'Soybean-notill', 'Soybean-mintill',
                        'Soybean-clean', 'Wheat', 'Woods', 'Buildings-Grass-Trees-Drives',
                        'Stone-Steel-Towers']
    elif name == 'SA':
        target_names = ['Brocoli_green_weeds_1','Brocoli_green_weeds_2','Fallow','Fallow_rough_plow','Fallow_smooth',
                        'Stubble','Celery','Grapes_untrained','Soil_vinyard_develop','Corn_senesced_green_weeds',
                        'Lettuce_romaine_4wk','Lettuce_romaine_5wk','Lettuce_romaine_6wk','Lettuce_romaine_7wk',
                        'Vinyard_untrained','Vinyard_vertical_trellis']
    elif name == 'PU':
        target_names = ['Asphalt','Meadows','Gravel','Trees', 'Painted metal sheets','Bare Soil','Bitumen',
                        'Self-Blocking Bricks','Shadows']
    
    classification = classification_report(y_test, y_pred, target_names=target_names)
    oa = accuracy_score(y_test, y_pred)
    confusion = confusion_matrix(y_test, y_pred)
    each_acc, aa = AA_andEachClassAccuracy(confusion)
    kappa = cohen_kappa_score(y_test, y_pred)
    
    return classification, confusion, oa*100, each_acc*100, aa*100, kappa*100

检测结果写在文件里:

classification, confusion, oa, each_acc, aa, kappa = reports(test_loader, ytest, 'IP')
classification = str(classification)
confusion = str(confusion)
file_name = "classification_report.txt"

with open(file_name, 'w') as x_file:
    x_file.write('\n')
    x_file.write('{} Kappa accuracy (%)'.format(kappa))
    x_file.write('\n')
    x_file.write('{} Overall accuracy (%)'.format(oa))
    x_file.write('\n')
    x_file.write('{} Average accuracy (%)'.format(aa))
    x_file.write('\n')
    x_file.write('\n')
    x_file.write('{}'.format(classification))
    x_file.write('\n')
    x_file.write('{}'.format(confusion))

 显示分类结果:

# load the original image
X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']

height = y.shape[0]
width = y.shape[1]

X = applyPCA(X, numComponents= pca_components)
X = padWithZeros(X, patch_size//2)

# 逐像素预测类别
outputs = np.zeros((height,width))
for i in range(height):
    for j in range(width):
        if int(y[i,j]) == 0:
            continue
        else :
            image_patch = X[i:i+patch_size, j:j+patch_size, :]
            image_patch = image_patch.reshape(1,image_patch.shape[0],image_patch.shape[1], image_patch.shape[2], 1)
            X_test_image = torch.FloatTensor(image_patch.transpose(0, 4, 3, 1, 2)).to(device)                                   
            prediction = net(X_test_image)
            prediction = np.argmax(prediction.detach().cpu().numpy(), axis=1)
            outputs[i][j] = prediction+1
    if i % 20 == 0:
        print('... ... row ', i, ' handling ... ...')


predict_image = spectral.imshow(classes = outputs.astype(int),figsize =(5,5))

MobileNet与HybridSN 高光谱图像分类_第14张图片

多测试几次:

MobileNet与HybridSN 高光谱图像分类_第15张图片MobileNet与HybridSN 高光谱图像分类_第16张图片MobileNet与HybridSN 高光谱图像分类_第17张图片

 每次都会得到不同的结果。

三、思考

1.3D卷积和2D卷积的区别?
        2D卷积只能提取二维特征,很难充分地提取高光谱的空间信息,而3D卷积则是由于计算量庞大而很少被使用。三维卷积可以提取更多的特征,但是多一个维度就意味着更复杂的计算量。由于很多深度学习框架本身就有极大的深度,每一层再都运用三维卷积,那计算量就太大了。因此2D卷积相对3D卷积更常见一些。

2.训练网络,然后多测试几次,会发现每次分类的结果都不一样,请思考为什么?

        (1)可能是初始阈值和权值不同,导致每次训练结果不同。

        (2)根据设置的dropout值,每次dropout掉不同的隐藏神经元来进行网络训练,因此会产生不同的结果。

3.如果想要进一步提升高光谱图像的分类性能,可以如何改进?

        可以使用注意力机制。从空间注意力和通道注意力这两个方面着手,增加分类性能。无论是对图像分类还是对图像识别和图像分割来说,将注意力机制加入到网络当中,一般都会显著提高性能。对于常用的SEnet,需要添加两个全连接层,网络会更加复杂一些,参数也会相应增加,可采用一些新颖的轻量级的注意力网络。

你可能感兴趣的:(分类,深度学习,神经网络,cnn)