什么是GMM
GMM的数学模型
高斯混合模型 (GMM)
高斯分布与概率密度分布 - PDF
跟K-Means相比较,属于软分类
实现方法-期望最大化(E-M)
停止条件-收敛
样本数据训练与预言 :
using namespace cv;
using namespace std;
using namespace cv::ml;
Mat src, dst;
int main(int argc, char** argv) {
Mat img(500, 500, CV_8UC3);
RNG rng(12345);
Scalar colorTab[] = {
Scalar(0,0,255),
Scalar(0,255,255),
Scalar(255,0,0),
Scalar(255,255,0),
Scalar(0,255,0)
};
int numCluster = rng.uniform(2, 5);
printf("cluster num :%d\n", numCluster);
int sampleCount = rng.uniform(2, 1000);
Mat point(sampleCount, 2, CV_32FC1);
Mat labels;
Mat centers;
//生成随机数
for (int k = 0; k < numCluster; k++) {
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = point.rowRange(k * sampleCount / numCluster, k == numCluster - 1 ? sampleCount : (k + 1) * sampleCount / numCluster);
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols * 0.05, img.rows * 0.05));
}
randShuffle(point, 1, &rng);
Ptrem_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(point, noArray(), labels, noArray());
//classify every image pixels
Mat sample(1, 2, CV_32FC1);
for (int row = 0; row < img.rows; row++) {
for (int col = 0; col < img.cols; col++) {
sample.at(0) = (float)col;
sample.at(1) = (float)row;
//预言
int response = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar c = colorTab[response];
circle(img, Point(col, row), 1, c * 0.75, -1);
}
}
//draw the clusters
for (int i = 0; i < sampleCount; i++) {
Point p(cvRound(point.at(i, 0)), point.at(i, 1));
circle(img, p, 1, colorTab[labels.at(i)], -1);
}
imshow("GMM resultimg", img);
结果:
图像分割 :
//初始化
int numCluster = 3;
const Scalar colors[] = {
Scalar(255,0,0),
Scalar(0,0,255),
Scalar(0,255,0),
Scalar(0,255,255)
};
int width = src.cols;
int height = src.rows;
int dims = src.channels();
int nsamples = width * height;
Mat points(nsamples, dims, CV_64FC1);
Mat labels;
Mat result = Mat::zeros(src.size(), CV_8UC3);
//图像RGB像素 数据转换为样本数据
int index;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
Vec3b rgb = src.at(row, col);
points.at(index, 0) = static_cast(rgb[0]);
points.at(index, 1) = static_cast(rgb[1]);
points.at(index, 2) = static_cast(rgb[2]);
}
}
//EM Cluster Train
Ptrem_model = EM::create();
em_model->setClustersNumber(numCluster);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 100, 0.1));
em_model->trainEM(points, noArray(), labels, noArray());
//对每个像素标记演示与显示
/*Mat sample(dims, 1, CV_64FC1);
int time = getTickCount();
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
int label = labels.at(index, 0);
Scalar c = colors[label];
result.at(row, col)[0] = c[0];
result.at(row, col)[1] = c[1];
result.at(row, col)[2] = c[2];
}
}
printf("time :%d", (getTickCount() - time) *getTickFrequency());
*/
//预言
Mat sample(dims, 1, CV_64FC1);
int time = getTickCount();
int r = 0, g = 0, b = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row * width + col;
b = src.at(row, col)[0];
g = src.at(row, col)[1];
r = src.at(row, col)[2];
sample.at(0) = b;
sample.at(1) = g;
sample.at(2) = r;
int response = cvRound(em_model->predict2(sample, noArray())[1]);
Scalar c = colors[response];
result.at(row, col)[0] = c[0];
result.at(row, col)[1] = c[1];
result.at(row, col)[2] = c[2];
}
}
imshow("DMMresult", result);
}
结果: