Keras学习---RNN模型建立篇

本例子是“IMDB sentiment classification task”,用单层LSTM实现。

1. 输入数据预处理
输入文本数据统一规整到长度maxlen=80个单词,为什么呢?
是不是长度太长时训练容易发散掉,这样就限制了记忆的长度了。
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
有没有动态的呢?因为输入的句子长度本身是动态长度的。

2. Embedding layer
代码中,max_features=20000对应的是词汇量大小。
关于Embedding Vector,如果是中文的,怎么处理呢?
在RNN训练过程中Embedding Vector是否也参与了训练呢?如何选择?

3. 关于RNN的模型架构的理解
Embedding Vector是128维的,隐层是128个节点(也可以是其他数值)。
Embedding Vector与隐层的节点是全连接的,隐层每个节点自带存储单元的。
在这个128节点的隐层之上,有一个Dense节点。这个Dense节点是和128节点的隐层全连接的。

Foward过程就是每次输入80个单词中的一个,直到最后一个单词输入结束,Dense节点最终的输出就是估计的Y值了

完整代码如下:
'''Trains a LSTM on the IMDB sentiment classification task.

The dataset is actually too small for LSTM to be of any advantage

compared to simpler, much faster methods such as TF-IDF + LogReg.

Notes:



- RNNs are tricky. Choice of batch size is important,

choice of loss and optimizer is critical, etc.

Some configurations won't converge.



- LSTM loss decrease patterns during training can be quite different

from what you see with CNNs/MLPs/etc.

'''

from __future__ import print_function



from keras.preprocessing import sequence

from keras.models import Sequential

from keras.layers import Dense, Embedding

from keras.layers import LSTM

from keras.datasets import imdb



max_features = 20000

maxlen = 80  # cut texts after this number of words (among top max_features most common words)

batch_size = 32



print('Loading data...')

(x_train, y_train), (x_test, y_test) = imdb.load_data(nb_words=max_features)

print(len(x_train), 'train sequences')

print(len(x_test), 'test sequences')



print('Pad sequences (samples x time)')

x_train = sequence.pad_sequences(x_train, maxlen=maxlen)

x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

print('x_train shape:', x_train.shape)

print('x_test shape:', x_test.shape)



print('Build model...')

model = Sequential()

model.add(Embedding(max_features, 128))

#model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(LSTM(128))


model.add(Dense(1, activation='sigmoid'))



# try using different optimizers and different optimizer configs

model.compile(loss='binary_crossentropy',

              optimizer='adam',

              metrics=['accuracy'])



print('Train...')

model.fit(x_train, y_train,

          batch_size=batch_size,

          nb_epoch=15,

          validation_data=(x_test, y_test))

score, acc = model.evaluate(x_test, y_test,

                            batch_size=batch_size)

print('Test score:', score)

print('Test accuracy:', acc)


通过summary()得到的函数统计如下:
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
embedding_3 (Embedding)          (None, None, 128)     2560000     embedding_input_1[0][0]
____________________________________________________________________________________________________
lstm_1 (LSTM)                    (None, 128)           131584      embedding_3[0][0]
____________________________________________________________________________________________________
dense_9 (Dense)                  (None, 1)             129         lstm_1[0][0]
====================================================================================================
Total params: 2,691,713
Trainable params: 2,691,713
Non-trainable params: 0



你可能感兴趣的:(Deep,Learning,NLP)