pytorch中view的用法相当于numpy中的reshape,即对数据维度进行重新定义,view(-1, 4)其中4代表分成4列,-1代表不确定行大小,即能分成多少行让程序自行计算,如果不能整除,则程序报错。
import torch
a = torch.arange(1, 21)
print(a)
输出结果:
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20])
---------------------------------------------------------------------------
b = a.view(-1, 4)
print(b)
输出结果:
tensor([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20]])
---------------------------------------------------------------------------
c = a.view(-1, 2, 5)
print(c)
输出结果:
tensor([[[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10]],
[[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]]])
[16, 17, 18, 19, 20]]])
---------------------------------------------------------------------------
d = a.view(-1, 3)
print(d)
输出结果:
RuntimeError Traceback (most recent call last)
Input In [9], in ()
----> 1 d = a.view(-1, 3)
2 print(d)
RuntimeError: shape '[-1, 3]' is invalid for input of size 20
|