数字图像处理-傅里叶变换系列编程

数字图像处理-傅里叶变换系列编程_第1张图片
数字图像处理-傅里叶变换系列编程_第2张图片

问题

问题1

通过计算一维傅里叶变换实现图像二维快速傅里叶变换
数字图像处理-傅里叶变换系列编程_第3张图片
代码实现

def dft2D(f):
    h,w = f.shape
    F = np.zeros(f.shape, dtype=complex)
    for i in range(h):
        F[i,:] = np.fft.fft(f[i,:])
    for i in range(w):
        F[:,i] = np.fft.fft(F[:,i])
    return F 

问题2

图像二维快速傅里叶逆变换
数字图像处理-傅里叶变换系列编程_第4张图片
代码实现

def idft2D(F):
    h,w = F.shape
    F1 = np.conj(F)
    f = np.zeros(F1.shape,dtype=complex)
    for i in range(h):
        f[i,:] = np.fft.fft(F1[i,:])
    for i in range(w):
        f[:,i] = np.fft.fft(f[:,i])
    f = f/(h*w)
    f = np.conj(f)
    f = np.abs(f)
    return f

问题3

测试图像二维快速傅里叶变换与逆变换
代码

import cv2
import numpy as np
#归一化
def normalization(data):
    _range = np.max(data) - np.min(data)
    return (data - np.min(data)) / _range

def dft2D(f):
    h,w = f.shape
    F = np.zeros(f.shape, dtype=complex)
    for i in range(h):
        F[i,:] = np.fft.fft(f[i,:])
    for i in range(w):
        F[:,i] = np.fft.fft(F[:,i])
    return F

def idft2D(F):
    h,w = F.shape
    F1 = np.conj(F)
    f = np.zeros(F1.shape,dtype=complex)
    for i in range(h):
        f[i,:] = np.fft.fft(F1[i,:])
    for i in range(w):
        f[:,i] = np.fft.fft(f[:,i])
    f = f/(h*w)
    f = np.conj(f)
    f = np.abs(f)
    return f

if __name__ == '__main__':
    f1 = cv2.imread("rose512.tif",cv2.IMREAD_GRAYSCALE)
    f = normalization(f1)
    F = dft2D(f)
    g = idft2D(F)
    d = np.abs(f-g)
    cv2.imshow('original', f1)
    cv2.imshow('g', g)
    cv2.imshow('d', d)
    cv2.waitKey(0)
    cv2.destroyAllWindows()        

结果展示
数字图像处理-傅里叶变换系列编程_第5张图片

问题4

计算图像的中心化二维快速傅里叶变换与谱图像

问题分析

首先合成矩形图像,测试结果如下图所示,其长为 60,宽为 10。
数字图像处理-傅里叶变换系列编程_第6张图片

代码

import numpy as np
import cv2
import Q3



if __name__ == '__main__':
    img = np.zeros((512,512))
    img[512//2-30:512//2+30,512//2-5:512//2+5]=1
    cv2.imshow('img', img)
    F1 = Q3.dft2D(img)
    F1 = Q3.normalization(np.abs(F1))
    img_c = np.zeros(img.shape)
    cv2.imshow('F1',  F1)
    for i in range (img.shape[0]):
        for j in range (img.shape[1]):
            img_c[i,j] = img[i,j]*((-1)**(i+j))
    F2 = Q3.dft2D(img_c)
    cv2.imshow('F2', Q3.normalization(np.abs(F2)))
    F3 = np.log(1+np.abs(F2))
    cv2.imshow('F3',  Q3.normalization(F3))
    cv2.waitKey(0)
    cv2.destroyAllWindows()

结果展示
数字图像处理-傅里叶变换系列编程_第7张图片

选做题

计算其他 5 幅 图像的二维快速傅里叶变换 : house.tif, house02.tif, lena_gray_512.tif, lunar_surface.tif, characters_test_pattern.tif。注意,有些图像的尺寸不是 2 的整数次幂,需要进行相应的像素填补处理。如果图像有多个通道可以选择其中的一个通道进行计算。

问题分析
数字图像处理-傅里叶变换系列编程_第8张图片
代码实现

import numpy as np
import cv2
import Q3


def isPower(n):
    if n < 1:
        return False
    i = 1
    while i <= n:
        if i == n:
            return True
        i <<= 1
    return False

def pad(img):
    if isPower(img.shape[0]) and isPower(img.shape[1]):
        return img
    h = w = 0
    i = 1
    while True:
        if 2**i>=img.shape[0] and h==0:
            h = 2**i
        if 2**i>=img.shape[1] and w==0:
            w = 2**i
        if h!=0 and w!=0:
            break
        i=i+1
    img2 = np.zeros((h,w))
    img2[(h-img.shape[0])//2:h-(h-img.shape[0])//2,(w-img.shape[1])//2:w-(w-img.shape[1])//2] = img
    return img2


def center(f):
    img_c = np.zeros(f.shape)
    for i in range(f.shape[0]):
        for j in range(f.shape[1]):
            img_c[i, j] = f[i, j] * ((-1) ** (i + j))
    return img_c


if __name__ == '__main__':
    f1 = cv2.imread("house.tif", cv2.IMREAD_GRAYSCALE)
    f2 = cv2.imread("house02.tif", cv2.IMREAD_GRAYSCALE)
    f3 = cv2.imread("lena_gray_512.tif",cv2.IMREAD_GRAYSCALE)
    f4 = cv2.imread("lunar_surface.tif", cv2.IMREAD_GRAYSCALE)
    f5 = cv2.imread("Characters_test_pattern.tif", cv2.IMREAD_GRAYSCALE)

    f11 = pad(Q3.normalization(f1))
    F11 = Q3.dft2D(f11)
    F11 = Q3.normalization(np.abs(F11))
    f12 = center(f11)
    F12 = Q3.dft2D(f12)
    F13 = np.log(1 + np.abs(F12))
    cv2.imshow('orign_house', cv2.resize(Q3.normalization(f11), (f11.shape[0]//2,f11.shape[1]//2))	)
    cv2.imshow('F1_house',cv2.resize(Q3.normalization(F11) , (F11.shape[0]//2,F11.shape[1]//2)))
    cv2.imshow('F2_house', cv2.resize(Q3.normalization(np.abs(F12)), (F12.shape[0]//2,F12.shape[1]//2)))
    cv2.imshow('F3_house',cv2.resize( Q3.normalization(F13), (F13.shape[0]//2,F13.shape[1]//2)))

    f21 = pad(Q3.normalization(f2))
    F21 = Q3.dft2D(f21)
    F21 = Q3.normalization(np.abs(F21))
    f22 = center(f21)
    F22 = Q3.dft2D(f22)
    F23 = np.log(1 + np.abs(F22))
    cv2.imshow('orign_house02', cv2.resize(Q3.normalization(f21), (f21.shape[0]//2,f21.shape[1]//2))	)
    cv2.imshow('F1_house02',cv2.resize(Q3.normalization(F21) , (F21.shape[0]//2,F21.shape[1]//2)))
    cv2.imshow('F2_house02',cv2.resize(Q3.normalization(np.abs(F22)), (F22.shape[0]//2,F22.shape[1]//2)))
    cv2.imshow('F3_house02',cv2.resize( Q3.normalization(F23), (F23.shape[0]//2,F23.shape[1]//2)))

    f31 = pad(Q3.normalization(f3))
    F31 = Q3.dft2D(f31)
    F31 = Q3.normalization(np.abs(F31))
    f32 = center(f31)
    F32 = Q3.dft2D(f32)
    F33 = np.log(1 + np.abs(F32))
    cv2.imshow('orign_lena_gray_512',cv2.resize(Q3.normalization(f31), (f31.shape[0]//2,f31.shape[1]//2))	)
    cv2.imshow('F1_lena_gray_512',  cv2.resize(Q3.normalization(F31) , (F31.shape[0]//2,F31.shape[1]//2)))
    cv2.imshow('F2_lena_gray_512',  cv2.resize(Q3.normalization(np.abs(F32)), (F32.shape[0]//2,F32.shape[1]//2)))
    cv2.imshow('F3_lena_gray_512', cv2.resize( Q3.normalization(F33), (F33.shape[0]//2,F33.shape[1]//2)))

    f41 = pad(Q3.normalization(f4))
    F41 = Q3.dft2D(f41)
    F41 = Q3.normalization(np.abs(F41))
    f42 = center(f41)
    F42 = Q3.dft2D(f42)
    F43 = np.log(1 + np.abs(F42))
    cv2.imshow('orign_lunar_surface', cv2.resize(Q3.normalization(f41), (f41.shape[1]//2,f41.shape[0]//2))	)
    cv2.imshow('F1_lunar_surface', cv2.resize(Q3.normalization(F41) , (F41.shape[1]//2,F41.shape[0]//2)))
    cv2.imshow('F2_lunar_surface', cv2.resize(Q3.normalization(np.abs(F42)), (F42.shape[1]//2,F42.shape[0]//2)))
    cv2.imshow('F3_lunar_surface',cv2.resize( Q3.normalization(F43), (F43.shape[1]//2,F43.shape[0]//2)))

    f51 = pad(Q3.normalization(f5))
    F51 = Q3.dft2D(f51)
    F51 = Q3.normalization(np.abs(F51))
    f52 = center(f51)
    F52 = Q3.dft2D(f52)
    F53 = np.log(1 + np.abs(F52))
    cv2.imshow('orign_Characters_test_pattern', cv2.resize(Q3.normalization(f51), (f51.shape[1]//2,f51.shape[0]//2))	)
    cv2.imshow('F1_Characters_test_pattern', cv2.resize(Q3.normalization(F51) , (F51.shape[1]//2,F51.shape[0]//2)))
    cv2.imshow('F2_Characters_test_pattern', cv2.resize(Q3.normalization(np.abs(F52)), (F52.shape[1]//2,F52.shape[0]//2)))
    cv2.imshow('F3_Characters_test_pattern',cv2.resize( Q3.normalization(F53), (F53.shape[1]//2,F53.shape[0]//2)))

    cv2.waitKey(0)
    cv2.destroyAllWindows()

结果展示
数字图像处理-傅里叶变换系列编程_第9张图片
数字图像处理-傅里叶变换系列编程_第10张图片
数字图像处理-傅里叶变换系列编程_第11张图片

你可能感兴趣的:(数字图像处理,opencv,计算机视觉,图像识别)