视频网址
Sequential官方文档,就是把一些层连起来
我们来使用CIFAR数据集写一个简单的神经网络
随便找一个CIFAR10的模型:
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
# 方法1 复杂的写法 一般不用
# self.conv1 = Conv2d(3, 32, 5, padding=2) # 这里的padding=2, stride=1是利用公式算出来的
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32, 32, 5, padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32, 64, 5, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024, 64)
# self.linear2 = Linear(64, 10)
# 方法2:使用Sequential,一步搞定
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
# 方法1 复杂的写法 一般不用
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
# 方法2:使用Sequential,一步搞定
x = self.model1(x)
return x
model = Model()
print(model)
# 检查代码正确性
input = torch.ones((64, 3, 32, 32))
output = model(input)
print(output.shape)
writer = SummaryWriter("./logs_seq")
writer.add_graph(model, input)
writer.close()
输出结果为
D:\Anaconda3\envs\pytorch\python.exe D:/研究生/代码尝试/nn_seq.py
Model(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])