【声明】来源b站视频小土堆PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili
CIFAR10 model结构import torch
import torch.nn as nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2d(3, 32, 5, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.linear1 = Linear(1024,64)
self.linear2 = Linear(64, 10)
def forward(self,x):
x= self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x= self.linear2(x)
return x
mymodel = MyModel()
print(mymodel)
#检验
input = torch.ones(64,3,32,32)
ouput = mymodel(input)
print(ouput.shape)
import torch
import torch.nn as nn
from keras import Sequential
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
# self.conv1 = Conv2d(3, 32, 5, padding=2)
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32, 32, 5, padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32, 64, 5, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024,64)
# self.linear2 = Linear(64, 10)
self.sequntial = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
# x= self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x= self.linear2(x)
x = self.sequntial(x)#自动按顺序经过以上步骤
return x
mymodel = MyModel()
print(mymodel)
#检验
input = torch.ones(64,3,32,32)
ouput = mymodel(input)
print(ouput.shape)
可视化