由官网公式,计算出padding可取2,stride可取1https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
class Lixinyu(nn.Module):
def __init__(self):
super(Lixinyu, self).__init__()
self.conv1 = Conv2d(3, 32, 5, stride=1, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
lixinyu = Lixinyu()
print(lixinyu)
D:\anaconda\python.exe C:/Users/ASUS/Desktop/tudui/nn_sequential.py
Lixinyu(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
Process finished with exit code 0
正常无实例化,更改linear中的 self.linear1 = Linear(1024, 64)为 self.linear1 = Linear(102400, 64),并不会报错!但当运用以下后,出错会报错
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
class Lixinyu(nn.Module):
def __init__(self):
super(Lixinyu, self).__init__()
self.conv1 = Conv2d(3, 32, 5, stride=1, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
lixinyu = Lixinyu()
print(lixinyu)
input = torch.ones(64, 3, 32, 32) #######
output = lixinyu(input)
print(output.shape)
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten, Sequential
class Lixinyu(nn.Module):
def __init__(self):
super(Lixinyu, self).__init__()
self.model1 = Sequential(Conv2d(3, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10))
def forward(self, x):
x = self.model1(x)
return x
lixinyu = Lixinyu()
print(lixinyu)
input = torch.ones(64, 3, 32, 32)
output = lixinyu(input)
print(output.shape)
D:\anaconda\python.exe C:/Users/ASUS/Desktop/tudui/nn_sequential.py
Lixinyu(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])
Process finished with exit code 0
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten, Sequential
from torch.utils.tensorboard import SummaryWriter
class Lixinyu(nn.Module):
def __init__(self):
super(Lixinyu, self).__init__()
self.model1 = Sequential(Conv2d(3, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10))
def forward(self, x):
x = self.model1(x)
return x
lixinyu = Lixinyu()
print(lixinyu)
input = torch.ones(64, 3, 32, 32)
output = lixinyu(input)
print(output.shape)
writer = SummaryWriter("p22")
writer.add_graph(lixinyu, input) #################
writer.close()