本博文是PyTorch的学习笔记,第14次内容记录,主要是讲解如何进行神经网络模型的保存和读取。
在搭建自己的神经网络模型之后,需要将模型进行保存,同时也需要读取或加载现有的神经网络模型,这里就介绍网络模型保存的第1种方法。以VGG16模型为例,代码如下:
import torch
import torchvision
vgg16 = torchvision.models.vgg16(pretrained=False)
# 保存方式1:不仅保存了网络模型,也保存了网络模型中的相关参数
torch.save(vgg16, "vgg16_model1.pth")
运行上述代码会发现在其同路径下保存了神经网络模型文件:vgg16_model1.pth。
在保存神经网络模型之后,可以在其他文件中调用该模型,代码如下:
import torch
# 方式1-> 保存方式1,加载模型
import torchvision
model = torch.load("vgg16_model1.pth")
print(model)
输出的网络模型结构信息如下:
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
在神经网络模型保存方法1中,不仅保存了模型的结构,同时也保存了模型的相关参数信息。此外,模型保存的方法2代码如下:
import torch
import torchvision
vgg16 = torchvision.models.vgg16(pretrained=False)
# 保存方式1:不仅保存了网络模型,也保存了网络模型中的相关参数
torch.save(vgg16, "vgg16_model1.pth")
# 保存方式2:只保存了模型的参数,占用空间更小,官方推荐方式
torch.save(vgg16.state_dict(), "vgg16_model2.pth")
运行上述代码会发现在其同路径下保存了神经网络模型文件:vgg16_model2.pth。
采用方法2保存网络模型之后,需要采用相应的方法加载网络模型,具体代码如下:
import torch
# 方式1-> 保存方式1,加载模型
import torchvision
model = torch.load("vgg16_model1.pth")
print(model)
# 方式2-> 保存方式2,加载模型
model = torch.load("vgg16_model2.pth") # 加载出来的是字典类型的数据
print(model)
由于保存方法2保存的是模型结构,所以加载出来的模型是以“字典”的方式展示出来的,效果如下:
OrderedDict([('features.0.weight', tensor([[[[ 0.0814, -0.0414, -0.0450],
[ 0.1337, 0.0163, 0.0327],
[-0.0058, 0.0628, -0.0551]],
[[ 0.0760, 0.0257, 0.0238],
[ 0.0218, 0.0477, -0.0491],
[ 0.0528, -0.0924, 0.0769]],
[[ 0.0652, -0.0108, 0.0140],
[ 0.0697, 0.0678, 0.0608],
[-0.0158, -0.0084, -0.0335]]],
[[[-0.0349, 0.0595, 0.1497],
[-0.0481, -0.0335, 0.1096],
[ 0.0062, -0.0172, 0.0420]],
...
从上述输出结果中得到的结果是字典类型,其中参数的值也一起输出来了,如果想要查看具体的网络结构,则需要增加下述代码:
# 方式2-> 保存方式2,加载模型结构
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_model2.pth")) # 输出完整的模型结构,与第一种方式输出的模型结构相同
print(vgg16)
上述代码输出的网络结构如下所示:
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(
(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
在本文重点介绍了如何保存和读取神经网络模型,这对日常中搭建自己的网络模型十分有用的。在下一篇博文中,将介绍神经网络模型的训练方法。