- 《人工智能所需的数学基础》:开启AI领域的数学之旅
杨焕月Great
《人工智能所需的数学基础》:开启AI领域的数学之旅【下载地址】人工智能所需的数学基础人工智能所需的数学基础欢迎来到《人工智能所需的数学基础》资源页面项目地址:https://gitcode.com/open-source-toolkit/2af1b项目介绍在人工智能(AI)的广阔天地中,数学是不可或缺的基石。《人工智能所需的数学基础》资源包正是为了帮助那些渴望深入AI领域的学习者,提供一套系统、全
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- Pytorch实现之粒子群优化算法在GAN中的应用
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络pytorch算法深度学习计算机视觉
简介简介:主要是采用了粒子群优化(PSO)算法来优化GAN的一个训练。PSO是一种是一种基于种群的随机优化技术。这种优化技术是通过粒子群进行的,粒子群在每次迭代中都会更新自己。对于给定的目标函数,这种方法利用一个搜索空间,在那里粒子群移动,找到所需的全局最小值。这些粒子与它们当前的环境局部相互作用,也与彼此相互作用,具有可接受的随机性质。通过合并粒子的当前速度,探索粒子的历史和粒子的邻居,可以知道
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- 基于图像处理的裂缝检测与特征提取
机器懒得学习
图像处理计算机视觉人工智能
一、引言裂缝检测是基础设施监测中至关重要的一项任务,尤其是在土木工程和建筑工程领域。随着自动化技术的发展,传统的人工巡检方法逐渐被基于图像分析的自动化检测系统所取代。通过计算机视觉和图像处理技术,能够高效、精确地提取裂缝的几何特征,如长度、宽度、方向、面积等,从而为工程质量评估提供数据支持。本文将详细介绍一段用于裂缝检测与特征提取的Python代码,重点讲解其实现的核心算法与关键步骤,分析其应用场
- 快速排序_详解快速排序算法
网站推广优化yetaoaiueo
排序算法算法
快速排序(Quicksort),计算机科学词汇,适用领域Pascal,c++等语言,是对冒泡排序算法的一种改进。快速排序的排序流程快速排序算法通过多次比较和交换来实现排序,其排序流程如下:(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于分界值,而右边部分中各元素都大于或等于分界值
- VTK知识学习(32)-图像运算
无所谓จุ๊บ
VTK学习VTK
1、数学运算vklmageMathematics提供了基本的一元和二元数学操作。根据不同的操作,需要一个或者两个输入图像。二元数学操作要求两个输入图像具有相同的像素数据类型和颜色组分。当两个图像大小不同时,输出图像的范围为两个输入图像范围的并集,并且原点和像素间隔与第一个输入图像保持一致。privatevoidTestMathematics(){//绘制一个暗红色矩形vtkImageCanvasS
- LeetCode 热题 100
TTXS123456789ABC
#BS_算法leetcode算法职场和发展
LeetCode热题1001.快速/归并排序快速排序归并排序2.动态规划_必考2.1多维动态规划_必考3.二叉树_必考4.链表_必考5.二分查找6.其他热门算法哈希双指针滑动窗口子串普通数组矩阵图论回溯栈堆贪心算法技巧踏踏实实连SQL几大题型。1.快速/归并排序,2.动态规划(背包爬楼),3.二叉树,4.链表反序,5.二分查找,6.其他杂七杂八(三数之和这种)。1.快速/归并排序快速排序归并排序2
- 【数据结构】考点 二十四:快速排序算法
超越超
数据结构考试【临时抱佛脚】结构算法排序算法数据结构算法快速排序
【考试临时抱佛脚】系列文章针对于、、的考生打造。无论你是、还是这个专栏都适合你,Let’sgo!一、方法快速排序是一种分治算法,它将数据分为两个子集,其中一个子集的所有数据都比另一个子集的所有数据要小,然后递归地对这两个子集进行快速排序操作。需先选择一个基准数,然后再将小的放左,大的放右,递归进行排序。每个子序列用插入排序解决排序问题。二、考察形式11、问题取键值55为基准,执行一趟快速排序后可能
- Python网络爬虫-WebSocket数据抓取
程序小勇
faiss爬虫python网络协议websocket开发语言
目录前言1、WebSocket请求的分析通常涉及以下几个方面:2、利用WebSocket爬取数据总结最后,创作不易!非常感谢大家的关注、点赞、评论啦!谢谢三连哦!好人好运连连,学习进步!工作顺利哦!博主介绍:✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉着互联网精神开源贡献精神,答疑解惑、坚持优质作品共享。本人是掘金/腾讯云/阿里云等平台优质作者、擅长前后端项目开发和毕业项目实战,
- 微服务架构中的负载均衡与服务注册中心(Nacos)
ღ᭄ꦿ࿐Never say never꧂
微服务架构微服务负载均衡springcloudspringboot后端java
1.负载均衡:解决实际业务问题1.1业务场景思考想象一个电子商务平台的微服务架构。我们有一个订单服务和多个用户服务实例。当订单服务需要调用用户服务时,它如何选择具体调用哪一台用户服务器?这就是负载均衡要解决的核心问题。1.2常用负载均衡算法及其业务影响1.2.1轮询(RoundRobin)原理:请求依次分配给每个服务器。业务影响:优点:实现简单,在服务器性能相近的情况下能达到较好的负载平衡。缺点:
- [学习笔记-SLAM篇]Ubuntu16.04+ROS下配置ORB-SLAM3——后续
warningm_dm
SLAM篇
作为一篇后记,就主要做补充之用。索引1.编译不显示warning2.LocalMapping报错3.KannalaBrandt8报错4.RGB-D设置文件1.编译不显示warning编译的过程中有报错,但是一贯的,warning太多了,所以修改一下,便于找错。参考ubuntu18.04配置ORB-SLAM3。将ORB-SLAM3的CMakeLists.txt中的-Wall后面加上-w,可屏蔽编译的
- Redis 集群模式的工作原理能说一下么?
小新杂谈社
缓存后端面试redis数据库缓存分布式
面试题Redis集群模式的工作原理能说一下么?在集群模式下,Redis的key是如何寻址的?分布式寻址都有哪些算法?了解一致性hash算法吗?面试官心理分析在前几年,Redis如果要搞几个节点,每个节点存储一部分的数据,得借助一些中间件来实现,比如说有codis,或者twemproxy,都有。有一些Redis中间件,你读写Redis中间件,Redis中间件负责将你的数据分布式存储在多台机器上的Re
- 二十redis之gossip协议
我爱看明朝
后端
二十redis之gossip协议gossip协议是p2p方式的通信协议。通过节点之间不断交换信息,一段时间后所有节点都会知道整个集群完整的信息。gossip算法,意思是八卦算法,在办公室中只要一个人八卦一下,在有限的时间内,办公室内的所有人都会知道八卦消息。算法过程:集群中的一个节点广播自身信息,部分节点收到了信息,这些节点再继续在集群中传播这个节点的信息,一段时间后整个集群中都有了这个节点的信息
- 【人工智能】AI现状分析 || 神经网络的数学基础 || 人工智能交叉领域的发展和技术应用 || 附:小白入门人工智能 学习步骤
追光者♂
Python从入门到人工智能百题千解计划(项目实战案例)人工智能交叉领域神经网络的数学基础AI现状分析
声明:仅学习使用~资料整理分析不易,点个赞吧!目录1.AI现状分析(人工智能基础入门概念)1.1人工智能基础概念1.2人工智能的技术发展路线1.3产业发展的驱动因素1.4人工智能薪资岗位介绍2.神经网络的数学基础2.1神经网络的生物表示2.2神经网络的数学表示2.3神经网络必备的一些数学基础2.3.1Sigmoid函数2.3.2偏置2.4总结3.人工智能交叉领域的发展和技术应用3.1人工智能应用交
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- 数据权限校验实践
fengdongnan
数据库前端网络
数据权限控制实践最近在实习中为公司项目完成一个文件数据权限校验代码的转换重构,写这篇博客来记录前后两种权限校验的实现方案与相关概念原实现方案:RBAC-基于角色的访问控制RBAC(Role-BasedAccessControl)RBAC是一种常见的访问控制模型,它通过角色来分配权限。在RBAC模型中,角色是一组权限的集合,用户通过被分配角色来获得相应的权限。RBAC的主要特点包括:角色分配:用户被
- LeetCode解决方案集:编程与面试技能提升
徐子贡
本文还有配套的精品资源,点击获取简介:LeetCode是一个编程训练平台,提供了大量编程题目,用于提升开发者的算法技能和面试准备。本文将探讨名为"some-leetcode-solutions"的开源项目,其中包括LeetCode问题的多种编程语言解决方案。这些解决方案由社区成员贡献,可用于学习不同思路和比较语言实现。开源项目遵循开源协议,允许自由使用和修改代码,鼓励知识共享。本文还强调了学习算法
- Qt Creator用法详解
不如温暖过生活
C++界面开发框架Qt最新资讯Qtqtcreator
Qt自带集成开发环境(IDE),名为QtCreator。它可以在Linux、OSX和Windows上运行,并提供智能代码完成、语法高亮、集成帮助系统、调试器和剖析器集成,还集成了所有主要的版本控制系统(如git、Bazaar)。除了QtCreator外,Windows上的开发人员还可以使用Qt的VisualStudio插件。也可以使用其他的IDE(如KDE上的KDevelop)。但当然绝不是必须使
- C#——垃圾回收(GC)
面向大象编程
C#c#开发语言面向对象编程
文章目录前言一、垃圾回收是什么二、好处三、GC过程1.GC条件2.GC步骤3.Mark-Compact标记压缩算法4.Generational分代算法5.FinalizationQueue和FreachableQueue四、托管和非托管资源1.托管资源2.非托管资源五、GC注意事项参考前言C#的垃圾回收网上有很多博客进行讲解,这里摘录一部分较好的讲解,同时建议直接使用微软官方文档,万变不离其宗一、
- Leetcode 3459. Length of Longest V-Shaped Diagonal Segment
Espresso Macchiato
leetcode笔记leetcode3459leetcodehardleetcode周赛437动态规划剪枝
Leetcode3459.LengthofLongestV-ShapedDiagonalSegment1.解题思路2.代码实现题目链接:3459.LengthofLongestV-ShapedDiagonalSegment1.解题思路这一题我的思路上就是一个动态规划加上剪枝的思路。首先,不难给出一个动态规划算法来考察每一个位置作为起始点时其所能获得的最大V字路径长度,但是,贸然地动态规划会出现超时
- 【C++】双指针算法专题
啊QQQQQ
c++数据结构开发语言
目录前言对撞指针快慢指针习题练习1.移动零.-力扣(LeetCode)算法思路算法流程代码实现2.复写零.-力扣(LeetCode)算法思路算法流程代码实现3.快乐数.-力扣(LeetCode)算法思路算法流程代码实现4.盛水最多的容器.-力扣(LeetCode)算法思路代码实现5.有效三角形的个数.-力扣(LeetCode)算法思路代码实现6.和为S的两个数.-力扣(LeetCode)算法思路代
- 线程池处理异常
NaughtyBo
#并发javaandroid开发语言
线程池在提交的任务在处理过程中发生了异常,却没有捕获到,导致异常只是输出在控制台,这通常需要把异常记录下来1、通过观察ThreadGroup的构造方法知道,当调用线程组的构造方法时,会获取当前线程所属的线程组,作为当前正在创建的线程组的parent线程组。2、通过在main方法中获取线程组信息可知,当前main线程所属的线程组是main线程组,而main线程组的parent线程组是system线程
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- 《码农必备神器 Git:解锁高效开发的密码》
a小胡哦
git软件工程源代码管理bug
在软件开发的世界里,代码的管理就如同交响乐的指挥,至关重要。而Git,无疑是这个领域中最出色的指挥家之一。它以其强大的功能,帮助开发者们高效地管理代码版本,协同工作,让软件开发的过程更加顺畅。今天,就让我们一起走进Git的世界,了解它的用处、安装方法以及一些实用的操作技巧。一、Git是什么,有啥用?Git是开源分布式版本控制系统,由LinusTorvalds于2005年开发,用于高效处理大小项目的
- 误差放大器的工作原理是什么?
深圳市青牛科技实业有限公司
顶源人工智能嵌入式硬件单片机机器人科技安防监控
误差放大器(ErrorAmplifier)是一种广泛应用于反馈控制系统中的电子元件,特别是在电源管理(如开关电源、线性稳压器等)和其他需要稳定控制的系统中。它的主要功能是通过放大系统的误差信号来调节输出,使其达到所期望的目标值。工作原理:输入误差信号:误差放大器的输入端通常接收两个信号:一个是参考信号,另一个是反馈信号。反馈信号是从系统的输出端通过某种反馈机制传递回来的信号,通常用于表示实际输出的
- 智能硬件定位技术发展趋势
2401_88540551
智能硬件智能手表物联网宠物智慧城市uni-app微信小程序
在科技飞速进步的当下,智能硬件定位技术作为众多领域的关键支撑,正沿着多元且极具创新性的路径蓬勃发展,持续重塑我们的生活与工作方式。一、精度提升的极致追求当前,智能硬件定位精度虽已满足诸多日常应用,但未来发展仍聚焦高精度突破。在自动驾驶领域,厘米级甚至毫米级定位精度至关重要。科研人员正致力于融合多种定位技术,如卫星定位、惯性导航、视觉识别与高精度地图匹配。通过复杂算法协同运作,车辆在复杂路况下能精准
- 【自学笔记】机器学习基础知识点总览-持续更新
Long_poem
笔记机器学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录机器学习重点知识点总览一、机器学习基础概念二、机器学习理论基础三、机器学习算法1.监督学习2.无监督学习3.强化学习四、机器学习处理流程五、机器学习常见问题与解决方法六、机器学习应用领域总结机器学习重点知识点总览一、机器学习基础概念定义:机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。本质:找到
- 解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
紫雾凌寒
AI炼金厂机器学习算法逻辑回归深度学习pythonscikit-learnmatplotlib
引言前面一篇文章我们介绍了机器学习算法中我们最先会接触到的算法——线性回归:机器学习的基石。今天我们继续学习机器学习中的另一个算法模型——逻辑回归(LogisticRegression)。一、逻辑回归:不是回归的“回归”在机器学习的庞大算法体系中,逻辑回归(LogisticRegression)虽然名字中带有“回归”,但却是一位不折不扣的“分类高手”,主要用于解决二分类问题,在众多领域发挥着关键作
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc