本文通过搭建一个简单的神经网络来学习Sequential的使用
目录
一、搭建神经网络
二、Sequential的使用
代码如下:
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
#搭建神经网络
class Test(nn.Module):
def __init__(self): #初始化
super(Test, self).__init__() #继承父类
self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2) #第一次卷积
self.maxpool1 = MaxPool2d(2) #第一次池化
self.conv2 = Conv2d(32, 32, 5, padding=2) #第二次卷积
self.maxpool2 = MaxPool2d(2) #第二次池化
self.conv3 = Conv2d(32, 64, 5, padding=2) #第三次卷积
self.maxpool3 = MaxPool2d(2) #地三次池化
self.flatten = Flatten() #torch.nn.Flatten展平成一维
self.linear1 = Linear(1024, 64) #第一次线性
self.linear2 = Linear(64, 10) #第二次线性def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return xtest = Test() #创建网络,初始化
print(test)input = torch.ones((64, 3, 32, 32))
output = test(input)
print(output.shape)
输出结果:
Test(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])
代码如下:
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
#搭建神经网络
class Test(nn.Module):
def __init__(self): #初始化
super(Test, self).__init__() #继承父类
self.sequential = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.sequential(x)
return x
test = Test() #创建网络,初始化
print(test)
input = torch.ones((64, 3, 32, 32))
output = test(input)
print(output.shape)
输出结果:
Test(
(sequential): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])
不难看出,sequential的使用,可以使得代码更加简洁。
使用tensorboard进行图像的可视化
writer = SummaryWriter("logs")
writer.add_graph(test, input) #.add_graph() 查看计算图
writer.close()
使用tensorboard进行图像的可视化,可以很清楚的了解网络中的每一步计算的输入和输出。