- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- 解决No such file or directory: ‘:/usr/local/cuda:/usr/local/cuda:...‘
北冰洋漂流
环境配置linux服务器运维
【报错】error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda:/usr/local/cuda:/usr/local/cuda:/usr/local/cuda/bin/nvcc'【解决方法】命令行输入命令exportCUDA_HOME=/usr/local/cuda重新运行安装(如pipinstall-v-e.)
- 解读CUDA Compiler Driver NVCC - Ch.3
AliceWanderAI
NVCCNVCC
前言上一篇文章简单了介绍了nvcc预定义的宏,以及支持的编译阶段,对应的输入文件后缀和输出文件的默认名。本篇文章了解CUDA源文件编译的整个workflow。OverviewCUDA编译的工作原理如下:输入程序经过设备编译编译预处理,编译为CUDA二进制(cubin)和/或PTX中间代码,被放置在一个fatbinary。输入程序再次预处理以供主机编译,嵌入到fatbinary,并将CUDA特定C+
- NVIDIA CUDA Compiler Driver NVCC
Yongqiang Cheng
NVIDIAGPU-CUDA-cuDNNNVIDIACUDACompilerNVCC
NVIDIACUDACompilerDriverNVCC4.2.8.23.`--list-gpu-code`(`-code-ls`)4.2.8.24.`--list-gpu-arch`(`-arch-ls`)Referenceshttps://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/Thedocumentationfornvcc,theCUDA
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- flash_attn安装
壶小旭
PythonLinuxpython
flash_attn安装1.cuda-nvcc安装https://anaconda.org/nvidia/cuda-nvcc2.torch安装#https://pytorch.org/#找到对应cuda版本的torch进行安装pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1213
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- windows 安装nvidaia驱动和cuda
njl_0114
配置环境windows
安装nvidaia驱动和cuda官网搜索下载驱动https://www.nvidia.cn/drivers/lookup/这里查出来的都是最高支持什么版本的cuda安装时候都默认精简就行官网下载所需版本的cuda包https://developer.nvidia.com/cuda-toolkit-archive安装成功但是nvcc-V失败,除了安装时候默认的加入的环境变量外。添加环境变量C:\Pr
- 报错:检测不到cuda解决方案
H_Shelly
pytorch
1.nvidia-smi查看:NVIDIA-SMIhasfailedbecauseitcouldn’tcommunicatewiththeNVIDIAdriver.MakesurethatthelatestNVIDIAdriverisinstalledandrunning.2.nvcc-V看了一下驱动是否还在?存在nvcc:NVIDIA®CudacompilerdriverCopyright©20
- error: [Errno 2] No such file or directory: ‘:/usr/local/cuda-12.1/bin/nvcc‘: ‘:/usr/local/cuda-12.1
鲤鱼不懂
bugcuda
一背景最近在服务器使用cuda报错,昨天使用还可以,今日就出问题,在此记录解决方案。二报错信息error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda-12.1/bin/nvcc':':/usr/local/cuda-12.1/bin/nvcc'三解决方案终端输入以下命令exportCUDA_HOME=/usr/local/cuda-12.1
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- ERROR: No matching distribution found for torch-geometri satisfies the requirement torch-geometric
zzzzz忠杰
笔记pytorchpython深度学习
试了网上的whl下载确保虚拟环境下nvcc和cuda版本一致,还不行遂找淘宝大佬,大佬换了pytorch版本python版本都不行最后根据报错出现的setup安装了pytest-runner,然后pipsearch。再pipinstalltorch-geometric的时候就成功了pipinstallpytest-runnerpipsearchtorch-geometricpipinstallto
- CUDA 问题解决 —— CUDA+MPI出错:"mpi.h" No such file or directory
__Sunny__
CUDAcudac语言
在CUDA源文件里使用MPI时,编译出错Makefile文件:CUDA_INSTALL_PATH=/usr/local/cuda-8.0MPI_INSTALL_PATH=/opt/intel/compilers_and_libraries_2017.0.098/linux/mpi/intel64NVCC=$(CUDA_INSTALL_PATH)/bin/nvccMPICC=$(MPI_INSTAL
- 多机多卡运行nccl-tests和channel获取
Pretend ^^
#NCCLNCCL分布式mpi深度学习ubuntu网络大模型
nccl-tests环境1.安装nccl2.安装openmpi3.单机测试4.多机测试mpirun多机多进程多节点运行nccl-testschannel获取环境Ubuntu22.04.3LTS(GNU/Linux5.15.0-91-genericx86_64)cuda11.8+cudnn8nccl2.15.1NVIDIAGeForceRTX4090*21.安装nccl#查看cuda版本nvcc-V
- Windows安装DeepSpeed
XerCis
windows
文章目录问题描述解决方案AssertionError:Unabletopre-compileasync_io参考文献问题描述DeepSpeed是一款微软推出的深度学习优化库,它使分布式训练和推理变得简单高效。解决方案需要提前安装:PyTorch,版本最好>=1.9CUDA或ROCm编译器,如nvcc或hipcc安装VisualStudio,如2019自行编译pythonsetup.pybdist_
- 20240202在Ubuntu20.04.6下配置环境变量之后让nvcc --version显示正常
南棱笑笑生
杂质杂质
20240202在Ubuntu20.04.6下配置环境变量之后让nvcc--version显示正常2024/2/220:19在Ubuntu20.04.6下编译whiper.cpp的显卡模式的时候,报告nvcc异常了!百度:nvcc-vnvidia-cuda-toolkitrootroot@rootroot-X99-Turbo:~/whisper.cpp$WHISPER_CUBLAS=1make-j
- 安装chatglm
假装我不帅
pythonpython人工智能linux
地址下载源代码下载完成后解压安装cuda输入nvcc-V查看是否安装cuda输入nvidia-smi查看支持的最高版本,最高支持12.1下载cudahttps://developer.nvidia.com/cuda-downloads双击安装同意之后点击下一步选择精简模式即可等待下载安装包输入nvcc-V查看是否安装成功其他版本cuda下载cuda11.7cuda11.8创建虚拟环境condacr
- 【环境配置】安装了pytorch但是报错torch.cuda.is_availabel()=Flase
坠金
深度学习报错环境配置pytorch深度学习人工智能环境配置
解决思路:importtorch正常,说明torch包安装正常,但是不能和gpu正常互动,猜测还是pytroch和cuda的配合问题1.查看torch包所需的cuda版本我的torch是2.0.1,在现在是比较新的包,需要12以上的cuda支持,我用nvcc-V或者setcuda查看当前环境路径下的cuda版本,显示为11.1,这显然无法匹配2.匹配cuda版本那就需要更新了,首先检查我的硬件是否
- CUDA 笔记
怎么开心怎么玩
cuda编程linuxc++
CUDA笔记线程全局索引定义grid和block尺寸:dim3grid_size(4);dim3block_size(8);调用核函数:kernel_fun>>(…);具体的线程的索引方式:blockIdx.x从0到3,threadIx.x从0到7计算方式:intid=blockIdx.x*blockDim.x+threadIdx.x;nvcc的编译流程nvcc分离全部源代码为:(1)主机代码(2
- mmdetection使用projects/gradio_demo
盛世芳华
目标检测
我用google的colab搭建。#Checknvccversion!nvcc-V#CheckGCCversion!gcc--version#installdependencies:(usecu111becausecolabhasCUDA11.1)%pipinstall-Uopenmim!miminstall"mmengine>=0.7.0"!miminstall"mmcv>=2.0.0rc4"#
- DualSPHysics v5.0源码编译教程,新手入门
ChangYan.
DualSPHysics编译动画c++
目录一、前期准备1.安装C++编译器2.安装CUDA二、下载源码三、编译四、报错解决五、验证一、前期准备DualSPHysics是可以编译运行在CPU和GPU上的,所以需要安装C++编译器:例如gcc,和CUDA编译器:nvcc。如果电脑上不支持CUDA,那么DualSPHysics也是可以运行的,只使用了CPU的那部分,而不用GPU。这里需要注意的是,如果要使用可执行文件在GPU上运行DualS
- [Visual Studio C盘找不到VC/Bin文件]nvcc fatal : Cannot find compiler ‘cl.exe‘ in PATH
Bartender_Jill
visualstudioidec++python
前言在用nvcc文件编译CUDA程序(.cu文件)时候报了以下错误:nvccfatal:Cannotfindcompiler‘cl.exe‘inPATH该问题是因为系统找不到cl.exe文件网上都说是要将C:\ProgramFiles\MicrosoftVisualStudio10.0\VC\bin文件目录加入到环境变量中,但我在电脑里找不到该目录。经过一番查找发现,新版本的visualstudi
- linux深度学习开发基础命令——极简版
Walt_像道光
linux深度学习运维
linux深度学习开发基础命令——极简版本博客只是阐述常用的部分shell命令,更为全面的内容请参考其他博客1.创建python虚拟环境默认使用conda创建condacreate-yourenv_namepyhton=3.x查看全部虚拟环境condaenvlist激活虚拟环境condaactivateenv_name或者找到activate.bat文件2.查看cuda版本nvcc-version
- 怎么查看cuda的版本
MonkeyKing.sun
pythoncuda
查看CUDA版本的方法主要有以下几种:1.使用命令行在命令行中,您可以使用以下命令来查看安装的CUDA版本。在Linux或macOS上:打开终端,然后输入:nvcc--version或者cat/usr/local/cuda/version.txt在Windows上:打开命令提示符(CMD),然后输入:nvcc--version如果CUDA正确安装且环境变量设置正确,这些命令将显示CUDA的版本信息
- fix bug: FileNotFoundError: [Errno 2] No such file or directory: ‘nvcc‘
zhangjipinggom
bug
1.问题描述运行的代码设计pycuda,会调用nvcc,确定已经安装cudatoolkit,在terminal中云运行nvcc-V能得到想到的结果:但是在pycharm中运行代码时提示:FileNotFoundError:[Errno2]Nosuchfileordirectory:'nvcc'2.解决办法在pycharm中添加cudatoolkit路径(像在~/.bashrc中那样)
- cuda安装完输入nvcc -V显示不是内部或外部的命令(添加cuda环境变量)
挽了个球球
python开发语言
按照查看比较高的教程添加变量,但是最后再cmd中输入nvcc-V时,一定要重启cmd!!!成功!
- 工作小计- RGB相关算子实现
Zip-List
cuda工作杂记c++c++cudaRGB
项目中的模型一直都是直接操作NV12的yuv格式数据,这次的模型只支持RGB格式的输入,正好来自己实现对应的算子。这里记录一下对应算子的实现过程,主要涉及到NV12到RGB的变换,RGB的crop/resize操作,对于数据的Norm/ToFloat操作,调整Layout等等。cu文件是要nvcc来进行编译的,但是其头文件可以供外部的cpp文件调用,另外这里的核函数并没有涉及到stream的考虑,
- 安装tensorrt环境在linux上
bug生成中
tensorrt及其他环境安装python开发语言人工智能目标检测深度学习
在linux上输入命令bashcat/etc/os-release命令查看系统版本nvidia-smi命令后有内容弹出而没有报错,表明系统中安装了NVIDIA显卡驱动,并且该命令成功地显示了有关NVIDIAGPU的信息。输入nvcc-V并且看到输出时,这表明您的系统中已经安装了NVIDIA的CUDA工具包,并且该命令成功地显示了CUDA编译器版本的信息这里是租的ubuntu远程服务器gpu版本,所
- CUDA Toolkit 下载,安装,验证
qyhua
linux人工智能运维
CUDAToolkit下载进cuda官网下载CUDAToolkit链接:https://developer.nvidia.com/cuda-downloads官网默认显示当前的最新版本,这里以安装CUDAToolkit12.2为示例下载CUDAToolkit完成CUDAToolkit安装开始安装:点同意,默认或下一步,直到完成。CUDAToolkit验证使用nvcc--version命令验证CUD
- Jetson Nano 重装系统后的一些初始化
BAs533
Jetson学习记录ubuntulinuxpython
JetsonNano重装系统后一些初始化前言pip工具安装Numpy安装Jtop工具安装nvcc:commandnotfound后续问题持续更新中ing前言我给JetsonNano开发板重新装了NVIDIA官方提供的系统后,系统一片空白,这里记录一下我对Ubuntu的一些配置,作为学习记录,大家也可以一起参考一下。JetsonNano官方镜像下载&烧录pip工具安装系统重装之后是没有安装pip工具
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc