图片读取:Image.open(ImgPath)

from PIL import Image

利用 img = Image.open(ImgPath) 打开的图片是PIL类型的,它自带resize函数。由于pytorch的顺序是(batch,c,h,w),所以需要进行PIL类型到numpy类型转换,tensorflow,numpy的顺序是(batch,h,w,c):

  # Load Image
  img_fn = os.path.join(self.input_path, filenames)
  img = Image.open(img_fn)  # RGB(默认)
  # img.show()

  # resize/crop if needed:[128*128*3]
  if self.input_size != 0:
      height = width = self.input_size
      img = img.resize((height, width), Image.BILINEAR)

  # 将PIL类型转化成numpy类型
  img = np.array(img).uint8()    # H*W*C

 # Load Image
  img_fn = os.path.join(self.input_path, filenames)
  img = Image.open(img_fn)  # RGB(默认)
  # img.show()
  # 将PIL类型转化成numpy类型
  img = np.array(img).uint8()    # H*W*C
 
  # resize/crop if needed:[128*128*3]
  if self.input_size != 0:
      height = width = self.input_size
      img = self.resize(img, height, width)

 def resize(self, img, height, width, centerCrop=True, interp='bilinear'):
     imgh, imgw = img.shape[0:2]
     if centerCrop and imgh != imgw:
         # center crop
         side = np.minimum(imgh, imgw)
         j = (imgh - side) // 2
         i = (imgw - side) // 2
         img = img[j:j + side, i:i + side, ...]
     # 改变图像大小并且隐藏归一化到0-255区间的操作
     img = scipy.misc.imresize(img, [height, width], interp=interp)
     return img

from scipy.misc import imread

利用 img = imread(ImgPath) 打开的图片虽然是numpy类型的,并且也是RGB格式。但是由于 scipy 在版本1.3.0后就取消了imread函数,如果下载低版本的scipy会与tensorflow出现各种不兼容现象,挺麻烦的

你可能感兴趣的:(pytorch框架,python,深度学习)