机器学习-数据科学库(HM)第二课总结

matplotlib折线图

# coding=utf-8
from matplotlib import pyplot as plt
import matplotlib

matplotlib.rc("font", family="Microsoft YaHei")

x = range(11, 31)
y_1 = [1, 0, 1, 1, 2, 4, 3, 2, 3, 4, 4, 5, 6, 5, 4, 3, 3, 1, 1, 1]
y_2 = [1, 0, 3, 1, 2, 2, 3, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 绘图
plt.plot(x, y_1, label="自己", color="orange", linestyle="-")
plt.plot(x, y_2, label="同桌", color="cyan", linestyle="-.")


# 设置X轴刻度
_xtick_labels  = ["{}岁".format(i) for i in x]
plt.xticks(x, _xtick_labels)
plt.yticks(range(0,9))

# 绘制网格
plt.grid(linestyle=":")

# 添加图例
plt.legend(loc="upper left")

# 展示图像
plt.show()

#保存
plt.savefig("./t3.png")


机器学习-数据科学库(HM)第二课总结_第1张图片

绘制散点图

from matplotlib import pyplot as plt
import matplotlib

my_font = matplotlib.rc("font", family="Microsoft YaHei")

y_3 = [11, 17, 16, 11, 12,
       11, 12, 6, 6, 7,
       8, 9, 12, 15, 14,
       17, 18, 21, 16, 17,
       20, 14, 15, 15, 15,
       19, 21, 22, 22, 22,
       23]

y_10 =[26, 26, 28, 19, 21,
       17, 16, 19, 18, 20,
       20, 19, 22, 23, 17,
       20, 21, 20, 22, 15,
       11, 15, 5, 13, 17,
       10, 11, 13, 12, 13,
       6]

x_3 = range(1, 32)
x_10 = range(51, 82)

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 使用scatter方法绘制散点图与之前的唯一区别
plt.scatter(x_3, y_3, label="3月份")
plt.scatter(x_10, y_10, label="10月份")

# 调整x轴的刻度
_x = list(x_3)+list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in x_3]
_xtick_labels += ["10月{}日".format(i-50) for i in x_10]
plt.xticks(_x[::3], _xtick_labels[::3], rotation=45)

# 添加图例
plt.legend(loc="upper left")

# 添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("3月与10月的温度散点图")

# 展示图片
plt.show()

# 保存图片
plt.savefig("./t4.png")

机器学习-数据科学库(HM)第二课总结_第2张图片

绘制条形图

# coding=utf-8
# 绘制横着的条形图

from matplotlib import pyplot as plt
import matplotlib

matplotlib.rc("font", family="Microsoft YaHei")


a = ["战狼2",
     "速度与激情8",
     "功夫瑜伽",
     "西游伏妖篇",
     "变形金刚5:最后的骑士",
     "摔跤吧!爸爸",
     "加勒比海盗5:死无对证",
     "金刚:骷髅岛",
     "极限特工:终极回归",
     "生化危机6:终章",
     "乘风破浪",
     "神偷奶爸3",
     "智取威虎山",
     "大闹天竺",
     "金刚狼3:殊死一战",
     "蜘蛛侠:英雄归来",
     "悟空传",
     "银河护卫队2",
     "情圣",
     "新木乃伊"]

b = [56.01, 26.94, 17.53, 16.49, 15.45,
     12.96, 11.8, 11.61, 11.28, 11.12,
     10.49, 10.3, 8.75, 7.55, 7.32,
     6.99, 6.88, 6.86, 6.58, 6.23]

# 设置图像大小
plt.figure(figsize=(20, 10), dpi=80)

# 绘图
plt.barh(range(len(a)), b, height=0.3, color="orange")

# 添加图例
# plt.legend(loc="upper left")

# 设置y轴
plt.yticks(range(len(a)), a)

# 设置标题
plt.title("票房排行")


# 绘制网格
plt.grid(alpha=0.3)

# 保存图像
plt.savefig("./t6.png")

# 展示图像
plt.show()

机器学习-数据科学库(HM)第二课总结_第3张图片

 

绘制直方图

# coding = utf-8

from matplotlib import pyplot as plt
import matplotlib

matplotlib.rc("font", family="Microsoft YaHei")

# 设置图像大小
plt.figure(figsize=(20, 8), dpi=80)

a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102, 123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

# 计算组数
d = 6   # 组距
num_bins = (max(a) - min(a)) // d

# 绘制图像
plt.hist(a, num_bins, density=True)

# 设置x轴刻度
plt.xticks(range(min(a), max(a)+d, d))

plt.grid()

# 保存图像
plt.savefig("./t7.png")

# 显示图像
plt.show()


 

机器学习-数据科学库(HM)第二课总结_第4张图片

plt.hist ()方法只能用于原始数据绘制直方频率图

更多工具

百度echart

plotly

seaborn

你可能感兴趣的:(python,matplotlib)