机器学习--第二周

四、多变量线性回归

4.1 梯度下降法实践–学习率

机器学习--第二周_第1张图片

4.2 正规方程

4.2.1 正规方程表达式:

在这里插入图片描述

机器学习--第二周_第2张图片
机器学习--第二周_第3张图片

summary

总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。

随着我们要讲的学习算法越来越复杂,例如,当我们讲到分类算法,像逻辑回归算法,我们会看到,实际上对于那些算法,并不能使用标准方程法。对于那些更复杂的学习算法,我们将不得不仍然使用梯度下降法。因此,梯度下降法是一个非常有用的算法,可以用在有大量特征变量的线性回归问题。或者我们以后在课程中,会讲到的一些其他的算法,因为标准方程法不适合或者不能用在它们上。但对于这个特定的线性回归模型,标准方程法是一个比梯度下降法更快的替代算法。所以,根据具体的问题,以及你的特征变量的数量,这两种算法都是值得学习的。

七、Logistic回归

逻辑回归函数就是sigmoid激活函数。使得值域在0到1之间。
机器学习--第二周_第4张图片

7.1 非凸函数和凸函数

非凸函数就是有很多局部最小值。凸函数有全局最小值。
机器学习--第二周_第5张图片

7.2高级优化

使用一些更高级、更复杂的方法来计算代价函数J和它的偏导数。比如:轭梯度法 BFGS (变尺度法) 和L-BFGS (限制变尺度法) 。这三种算法的具体细节超出了本门课程的范畴。实际上你最后通常会花费很多天,或几周时间研究这些算法,你可以专门学一门课来提高数值计算能力,不过让我来告诉你他们的一些特性:

这三种算法有许多优点:
一个是使用这其中任何一个算法,你通常不需要手动选择学习率 ,所以对于这些算法的一种思路是,给出计算导数项和代价函数的方法,你可以认为算法有一个智能的内部循环,而且,事实上,他们确实有一个智能的内部循环,称为线性搜索(line search)算法,它可以自动尝试不同的学习速率 ,并自动选择一个好的学习速率 ,因此它甚至可以为每次迭代选择不同的学习速率,那么你就不需要自己选择。这些算法实际上在做更复杂的事情,不仅仅是选择一个好的学习速率,所以它们往往最终比梯度下降收敛得快多了,不过关于它们到底做什么的详细讨论,已经超过了本门课程的范围。
实际上完全有可能成功使用这些算法,并应用于许多不同的学习问题,而不需要真正理解这些算法的内环间在做什么,如果说这些算法有缺点的话,那么我想说主要缺点是它们比梯度下降法复杂多了,特别是你最好不要使用 L-BGFS、BFGS这些算法,除非你是数值计算方面的专家。
学习到的主要内容:
写一个函数,它能返回代价函数值、梯度值,因此要把这个应用到逻辑回归,或者甚至线性回归中,你也可以把这些优化算法用于线性回归,你需要做的就是输入合适的代码来计算这里的这些东西。

当我有一个很大的机器学习问题时,我会选择这些高级算法,而不是梯度下降。有了这些概念,你就应该能将逻辑回归和线性回归应用于更大的问题中,这就是高级优化的概念。

八、 正则化

8.1 过拟合问题

机器学习--第二周_第6张图片
图一:欠拟合,高偏差
图二:just right
图三: 过拟合,高方差

过拟合:
如果我们有很多特征值,假设模型也许能够很好的拟合训练集的数据(代价函数等于0),但是不能很好的泛化到新样本。
泛化:是指一个假设模型应用到新样本的能力。
针对过拟合问题如何处理?
1.丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如PCA)
2.正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

7.2 代价函数

正则化的基本方法:
对于回归问题中的模型: 在这里插入图片描述
正式那些高次项(三次方、四次方)导致了过拟合的产生,如果能让这些高次项的系数接近于0,就可以很好的拟合了。需要做的是在一定程度上减小这些参数的值。
修改后的代价函数:
我们决定减小后两个参数的大小,要做的就是修改代价函数,在这两个参数设置一点惩罚。在尝试最小化代价时也需要将这个惩罚纳入其中,并最终选择较小一些的参数。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过这样的代价函数选择出的参数,对预测结果的影响就比之前小很多。

假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设:
在这里插入图片描述
经过正则化处理的模型与元模型的对比:
机器学习--第二周_第7张图片
机器学习--第二周_第8张图片

7.3 正则化线性回归

正则化线性回归的代价函数为:
在这里插入图片描述
梯度下降:

正则化方程
机器学习--第二周_第9张图片
针对方程不可逆的情况:
进行正则化还可以解决XTX不可逆的情况。
机器学习--第二周_第10张图片

7.4逻辑回归的正则化

针对较多的特征值,我们可以选择正则化,使得特征值变小,使得图像从蓝色线变成紫色线。解决过拟合问题。
机器学习--第二周_第11张图片
针对上图,如何实现?
机器学习--第二周_第12张图片

9 神经网络学习

无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。普通的逻辑回归模型,不能有效地处理这么多的特征,这时候我们需要神经网络。

10 应用机器学习的建议

10.1 决定下一步做什么

当我们运用训练好的模型来预测未知数据时发现有较大误差,下一步如何做?
机器学习--第二周_第13张图片
我们不应该随机选择上面的某种方法来改进我们的算法,而是运用一些机器学习诊断法来帮助我们知道上面哪些方法对我们的算法是有效的。

10.2 评估一个假设

在这节中介绍怎样用学过的算法来评估假设函数。

当我们确定学习算法的参数的时候,我们考虑的是选择参量来使训练误差最小化,有人认为得到一个非常小的训练误差一定是一件好事,但我们已经知道,仅仅是因为这个假设具有很小的训练误差,并不能说明它就一定是一个好的假设函数。而且我们也学习了过拟合假设函数的例子,所以这推广到新的训练集上是不适用的。 那么,你该如何判断一个假设函数是过拟合的呢?对于这个简单的例子,我们可以对假设函数进行画图,然后观察图形趋势
但对于特征变量不止一个的这种一般情况,还有像有很多特征变量的问题,想要通过画出假设函数来进行观察,就会变得很难甚至是不可能实现。 因此,我们需要另一种方法来评估我们的假设函数过拟合检验。 为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用70%的数据作为训练集,用剩下30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。(测试集评估)

测试集评估在通过训练集让我们的模型学习得出其参数后,对测试集运用该模型,我们有两种方式计算误差:
1.对于线性回归模型,我们利用测试集数据计算代价函数J
2.对于逻辑回归模型,我们除了可以利用测试数据集来计算代价函数外
在这里插入图片描述
误分类的比率,对于每一个测试集样本,计算:
在这里插入图片描述
然后对计算结果求平均。

10.3 模型选择和交叉验证

模型选择的方法:
1.使用训练集训练出10个模型

2.用10个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)

3.选取代价函数值最小的模型

4.用步骤3中选出的模型对测试集计算得出推广误差(代价函数的值)
机器学习--第二周_第14张图片

10.4 诊断偏差和方差

我们通常会通过将训练集和交叉验证集的代价函数误差与多项式的次数绘制在同一张图表上来帮助分析:机器学习--第二周_第15张图片
对于训练集,当 d 较小时,模型拟合程度更低,误差较大;随着 d 的增长,拟合程度提高,误差减小。 对于交叉验证集,当 d 较小时,模型拟合程度低,误差较大;但是随着 的增长,误差呈现先减小后增大的趋势,转折点是我们的模型开始过拟合训练数据集的时候。 如果我们的交叉验证集误差较大,我们如何判断是方差还是偏差呢?根据上面的图表,我们知道:
机器学习--第二周_第16张图片
训练集误差和交叉验证集误差近似时:偏差/欠拟合 交叉验证集误差远大于训练集误差时:方差/过拟合

10.5 正则化和偏差/方差

在我们在训练模型的过程中,一般会使用一些正则化方法来防止过拟合。但是我们可能会正则化的程度太高或太小了,即我们在选择λ的值时也需要思考与刚才选择多项式模型次数类似的问题。
机器学习--第二周_第17张图片
在这里插入图片描述
机器学习--第二周_第18张图片
选择λ的方法为:
1.使用训练集训练出12个不同程度正则化的模型
2.用12个模型分别对交叉验证集计算的出交叉验证误差
3.选择得出交叉验证误差最小的模型
4.运用步骤3中选出模型对测试集计算得出推广误差,我们也可以同时将训练集和交叉验证集模型的代价函数误差与λ的值绘制在一张图表上:
机器学习--第二周_第19张图片
当 λ 较小时,训练集误差较小(过拟合)而交叉验证集误差较大 • 随着 λ 的增加,训练集误差不断增加(欠拟合),而交叉验证集误差则是先减小后增加

10.6 学习曲线

学习曲线
来判断某一个学习算法是否处于偏差、方差问题。学习曲线是学习算法的一个很好的合理检验(sanity check)。学习曲线是将训练集误差和交叉验证集误差作为训练集样本数量(m)的函数绘制的图表。 即,如果我们有100行数据,我们从1行数据开始,逐渐学习更多行的数据。思想是:当训练较少行数据的时候,训练的模型将能够非常完美地适应较少的训练数据,但是训练出来的模型却不能很好地适应交叉验证集数据或测试集数据。
机器学习--第二周_第20张图片
机器学习--第二周_第21张图片
如何利用学习曲线识别高偏差/欠拟合
作为例子,我们尝试用一条直线来适应下面的数据,可以看出,无论训练集有多么大误差都不会有太大改观:
机器学习--第二周_第22张图片
也就是说在高偏差/欠拟合的情况下,增加数据到训练集不一定能有帮助。

如何利用学习曲线识别高方差/过拟合
假设我们使用一个非常高次的多项式模型,并且正则化非常小,可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果。机器学习--第二周_第23张图片
也就是说在高方差/过拟合的情况下,增加更多数据到训练集可能可以提高算法效果。

10.7决定下一步做什么

哪些方法有助于改进学习算法的效果
1.获得更多的训练样本——解决高方差
2.尝试减少特征的数量——解决高方差
3.尝试获得更多的特征——解决高偏差
4.尝试增加多项式特征——解决高偏差
5.尝试减少正则化程度λ——解决高偏差
6.尝试增加正则化程度λ——解决高方差

神经网络的方差和偏差
机器学习--第二周_第24张图片
使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但计算代价较小使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。 通常选择较大的神经网络并采用正则化处理会比采用较小的神经网络效果要好。 对于神经网络中的隐藏层的层数的选择,通常从一层开始逐渐增加层数,为了更好地作选择,可以把数据分为训练集、交叉验证集和测试集,针对不同隐藏层层数的神经网络训练神经网络, 然后选择交叉验证集代价最小的神经网络。

十一、机器学习系统的设计

11.1 首先要做什么

以垃圾邮件分类器算法为例子进行讨论。为解决这样的一个问题提,我们首先要做的决定是如何选择并表达特征向量x。我们可以选择一个由100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为1,不出现为0),尺寸为100×1。
构建这个分类器算法,我们可以做的,比如:
1.收集更多的数据,让我们有更多的垃圾邮件和非垃圾邮件的样本
2.基于邮件的路由信息开发一系列复杂的特征
3.基于邮件的正文信息开发一系列复杂的特征,包括考虑截词的处理
4.为探测刻意的拼写错误(把watch 写成w4tch)开发复杂的算法

在上面这些选项中,非常难决定应该在哪一项上花费时间和精力,作出明智的选择,比随着感觉走要更好。当我们使用机器学习时,总是可以“头脑风暴”一下,想出一堆方法来试试。实际上,当你需要通过头脑风暴来想出不同方法来尝试去提高精度的时候,你可能已经超越了很多人了。大部分人并不尝试着列出可能的方法,他们做的只是某天早上醒来,因为某些原因有了一个突发奇想:“让我们来试试用Honey Pot项目收集大量的数据吧。”
我们将在随后的课程中讲误差分析,我会告诉你怎样用一个更加系统性的方法,从一堆不同的方法中,选取合适的那一个。因此,你更有可能选择一个真正的好方法,能让你花上几天几周,甚至是几个月去进行深入的研究。

11.2 误差分析

最好的实践方法:
构建一个简单的算法,这样你可以很快地实现它。 每当我研究机器学习的问题时,我最多只会花一天的时间,就是字面意义上的24小时,来试图很快的把结果搞出来,即便效果不好。坦白的说,就是根本没有用复杂的系统,但是只是很快的得到的结果。即便运行得不完美,但是也把它运行一遍,最后通过交叉验证来检验数据。一旦做完,你可以画出学习曲线,通过画出学习曲线,以及检验误差,来找出你的算法是否有高偏差和高方差的问题,或者别的问题。在这样分析之后,再来决定用更多的数据训练,或者加入更多的特征变量是否有用。

在构造垃圾邮件分类器时我会看一看我的交叉验证数据集,然后亲自看一看哪些邮件被算法错误地分类。因此,通过这些被算法错误分类的垃圾邮件与非垃圾邮件,你可以发现某些系统性的规律:什么类型的邮件总是被错误分类。经常地这样做之后,这个过程能启发你构造新的特征变量,或者告诉你:现在这个系统的短处,然后启发你如何去提高它。

构建一个学习算法的推荐方法:
1.从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法
2.绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择
3.进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的样本,看看这些样本是否有某种系统化的趋势。

误差分析要做的工作:以垃圾邮件过滤器为例
检验交叉验证集中我们的算法产生错误预测的所有邮件,看:是否能将这些邮件按照类分组。例如医药品垃圾邮件,仿冒品垃圾邮件或者密码窃取邮件等。然后看分类器对哪一组邮件的预测误差最大,并着手优化。 思考怎样能改进分类器。例如,发现是否缺少某些特征,记下这些特征出现的次数。 例如记录下错误拼写出现了多少次,异常的邮件路由情况出现了多少次等等,然后从出现次数最多的情况开始着手优化。 误差分析并不总能帮助我们判断应该采取怎样的行动。有时我们需要尝试不同的模型,然后进行比较,在模型比较时,用数值来判断哪一个模型更好更有效,通常我们是看交叉验证集的误差。 在我们的垃圾邮件分类器例子中,对于“我们是否应该将discount/discounts/discounted/discounting处理成同一个词?”如果这样做可以改善我们算法,我们会采用一些截词软件。误差分析不能帮助我们做出这类判断,我们只能尝试采用和不采用截词软件这两种不同方案,然后根据数值检验的结果来判断哪一种更好。
强烈推荐在交叉验证集上来实施误差分析,而不是在测试集上。

summary:
当你在研究一个新的机器学习问题时,我总是推荐你实现一个较为简单快速、即便不是那么完美的算法。我几乎从未见过人们这样做。大家经常干的事情是:花费大量的时间在构造算法上,构造他们以为的简单的方法。因此,不要担心你的算法太简单,或者太不完美,而是尽可能快地实现你的算法。当你有了初始的实现之后,它会变成一个非常有力的工具,来帮助你决定下一步的做法。因为我们可以先看看算法造成的错误,通过误差分析,来看看他犯了什么错,然后来决定优化的方式。另一件事是:假设你有了一个快速而不完美的算法实现,又有一个数值的评估数据,这会帮助你尝试新的想法,快速地发现你尝试的这些想法是否能够提高算法的表现,从而你会更快地做出决定,在算法中放弃什么,吸收什么误差分析可以帮助我们系统化地选择该做什么。

11.3 类偏斜的误差度量

类偏斜情况表现为我们的训练集中有非常多的同一种类的样本,只有很少或没有其他类的样本。
查准率(Precision)查全率(Recall) 我们将算法预测的结果分成四种情况:
1.正确肯定(True Positive,TP):预测为真,实际为真
2.正确否定(True Negative,TN):预测为假,实际为假
3.错误肯定(False Positive,FP):预测为真,实际为假
4.错误否定(False Negative,FN):预测为假,实际为真
查准率=TP/(TP+FP)
例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。
查全率=TP/(TP+FN)
例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。 这样,对于我们刚才那个总是预测病人肿瘤为良性的算法,其查全率是0。
机器学习--第二周_第25张图片

11.4 查准率和查全率之间的权衡

如果我们希望只在非常确信的情况下预测为真(肿瘤为恶性),即我们希望更高的查准率,我们可以使用比0.5更大的阀值,如0.7,0.9。这样做我们会减少错误预测病人为恶性肿瘤的情况,同时却会增加未能成功预测肿瘤为恶性的情况。 如果我们希望提高查全率,尽可能地让所有有可能是恶性肿瘤的病人都得到进一步地检查、诊断,我们可以使用比0.5更小的阀值,如0.3。 我们可以将不同阀值情况下,查全率与查准率的关系绘制成图表,曲线的形状根据数据的不同而不同:
机器学习--第二周_第26张图片
我们希望有一个帮助我们选择这个阀值的方法。一种方法是计算F1 值(F1 Score),其计算公式为:
机器学习--第二周_第27张图片
我们选择使得F1值最高的阀值.

十三 支持向量机(SVM)

svm也是监督学习算法的一种。与逻辑回归和神经网络相比,支持向量机在学习复杂的非线性方程时提供一种更为清晰、更加强大的方式。

13.1 优化目标

机器学习--第二周_第28张图片
支持向量机中的整个优化目标函数
机器学习--第二周_第29张图片

13.2 直观上对大间隔的理解

机器学习--第二周_第30张图片
支持向量机的要求更高,不仅仅要能正确分开输入的样本,即不仅仅要求θTx>0,我们需要的是比0值大很多,比如大于等于1,我也想这个比0小很多,比如我希望它小于等于-1,这就相当于在支持向量机中嵌入了一个额外的安全因子,或者说安全的间距因子。

在支持向量机中,这个因子会导致什么结果。具体而言,我接下来会考虑一个特例。我们将这个常数C设置成一个非常大的值。比如我们假设C的值为100000或者其它非常大的数,然后来观察支持向量机会给出什么结果?
机器学习--第二周_第31张图片
机器学习--第二周_第32张图片
当你最小化这个关于变量θ的函数的时候,你会得到一个非常有趣的决策边界
如下图所示,黑色的决策边界看起来更稳健,在分离正样本和负样本上它显得更好。数学上来讲,这是什么意思呢?这条黑线有更大的距离,这个距离叫做间距(margin)。

黑色的决策界和训练样本之间有更大的最短距离。然而粉线和蓝线离训练样本就非常近,在分离样本的时候就会比黑线表现差。因此,这个距离叫做支持向量机的间距,而这是支持向量机具有鲁棒性的原因,因为它努力用一个最大间距来分离样本。因此支持向量机有时被称为大间距分类器。
机器学习--第二周_第33张图片
另一种情况
如下图所示
在这里,如果你加了这个样本,为了将样本用最大间距分开,也许我最终会得到一条类似这样的决策界,对么?就是这条粉色的线,仅仅基于一个异常值,仅仅基于一个样本,就将我的决策界从这条黑线变到这条粉线,这实在是不明智的。而如果正则化参数C,设置的非常大,这事实上正是支持向量机将会做的。它将决策界,从黑线变到了粉线,但是如果 C 设置的小一点,**如果你将C设置的不要太大,则你最终会得到这条黑线,**当然数据如果不是线性可分的,如果你在这里有一些正样本或者你在这里有一些负样本,则支持向量机也会将它们恰当分开。因此,大间距分类器的描述,仅仅是从直观上给出了正则化参数 C 非常大的情形,同时,要提醒你 C 的作用类似于1/ λ, λ是我们之前使用过的正则化参数。这只是 C 非常大的情形,或者等价地 λ 非常小的情形。你最终会得到类似粉线这样的决策界,但是实际上应用支持向量机的时候,当C不是非常非常大的时候,它可以忽略掉一些异常点的影响,得到更好的决策界。甚至当你的数据不是线性可分的时候,支持向量机也可以给出好的结果。
机器学习--第二周_第34张图片

C=1/ λ时,因此
C较大时,相当于 λ较小,可能会导致过拟合,高方差
C较小时,相当于 λ较大,可能会导致低拟合,高偏差

13.3 核函数1

机器学习--第二周_第35张图片
在这里插入图片描述
机器学习--第二周_第36张图片
地标的作用:

在这里插入图片描述

13.4 使用SVM

机器学习--第二周_第37张图片

13.4.1 使用软件库来完成

需要完成的事情
1.是提出参数的选择。我们在之前的视频中讨论过误差/方差在这方面的性质。

2、你也需要选择内核参数或你想要使用的相似函数,其中一个选择是:我们选择不需要任何内核参数,没有内核参数的理念,也叫线性核函数。因此,如果有人说他使用了线性核的SVM(支持向量机),这就意味这他使用了不带有核函数的SVM(支持向量机)。

一些普遍使用的准则(n为特征数,m是训练样本数)
(1) 如果相对于m而言,n要大许多,即训练集数据量不够支持我们训练一个复杂的非线性模型,我们选用逻辑回归模型或者不带核函数的支持向量机。

(2)如果n较小,m大小中等,eg:n在1-1000之间,m在10-10000之间,使用高斯核函数的支持向量机。

(3)如果n较小,m较大,eg:n在1-1000之间,m大于50000,则使用支持向量机非常慢,解决方案是创造、增加更多的特征,然后使用逻辑回归或不带核函数的支持向量机。

值得一提的是,神经网络在以上三种情况下都可能会有较好的表现,但是训练神经网络可能非常慢,选择支持向量机的原因主要在于它的代价函数是凸函数,不存在局部最小值。

当你有非常非常大的训练集,且用高斯核函数是在这种情况下,我经常会做的是尝试手动地创建,拥有更多的特征变量,然后用逻辑回归或者不带核函数的支持向量机。

逻辑回归和不带核函数的SVM
逻辑回归和不带核函数的支持向量机它们都是非常相似的算法,不管是逻辑回归还是不带核函数的SVM,通常都会做相似的事情,并给出相似的结果。但是根据你实现的情况,其中一个可能会比另一个更加有效。但是在其中一个算法应用的地方,逻辑回归或不带核函数的SVM另一个也很有可能很有效。但是随着SVM的复杂度增加,当你使用不同的内核函数来学习复杂的非线性函数时,这个体系,你知道的,当你有多达1万(10,000)的样本时,也可能是5万(50,000),你的特征变量的数量这是相当大的。那是一个非常常见的体系,也许在这个体系里,不带核函数的支持向量机就会表现得相当突出。你可以做比这困难得多需要逻辑回归的事情。

神经网络的应用(当时GPU计算比较慢,神经网络还不流行)
对于所有的这些问题,对于所有的这些不同体系一个设计得很好的神经网络也很有可能会非常有效。有一个缺点是,或者说是有时可能不会使用神经网络的原因是:对于许多这样的问题,神经网络训练起来可能会特别慢,但是如果你有一个非常好的SVM实现包,它可能会运行得比较快比神经网络快很多,尽管我们在此之前没有展示,但是事实证明,SVM具有的优化问题,是一种凸优化问题。因此,好的SVM优化软件包总是会找到全局最小值,或者接近它的值。对于SVM你不需要担心局部最优。在实际应用中,局部最优不是神经网络所需要解决的一个重大问题,所以这是你在使用SVM的时候不需要太去担心的一个问题。根据你的问题,神经网络可能会比SVM慢,尤其是在这样一个体系中,至于这里给出的参考,看上去有些模糊,如果你在考虑一些问题,这些参考会有一些模糊,但是我仍然不能完全确定,我是该用这个算法还是改用那个算法,这个没有太大关系,当我遇到机器学习问题的时候,有时它确实不清楚这是否是最好的算法,但是就如在之前的视频中看到的算法确实很重要。但是通常更加重要的是:你有多少数据,你有多熟练是否擅长做误差分析和排除学习算法,指出如何设定新的特征变量和找出其他能决定你学习算法的变量等方面,通常这些方面会比你使用逻辑回归还是SVM这方面更加重要。

你可能感兴趣的:(机器学习)