机器学习-朴素贝叶斯

朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生. 朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等.

贝叶斯定理

贝叶斯定理由英国数学家托马斯.贝叶斯 ( Thomas Bayes)提出,用来描述两个条件概率之间的关系,定理描述为:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B) = \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)其中, P ( A ) P(A) P(A) P ( B ) P(B) P(B)是A事件和B事件发生的概率. P ( A ∣ B ) P(A|B) P(AB)称为条件概率,表示B事件发生条件下,A事件发生的概率. 推导过程: P ( A , B ) = P ( B ) P ( A ∣ B ) P ( B , A ) = P ( A ) P ( B ∣ A ) P(A,B) =P(B)P(A|B)\\P(B,A) =P(A)P(B|A) P(A,B)=P(B)P(AB)P(B,A)=P(A)P(BA)其中 P ( A , B ) P(A,B) P(A,B)称为联合概率,指事件B发生的概率,乘以事件A在事件B发生的条件下发生的概率. 因为 P ( A , B ) = P ( B , A ) P(A,B)=P(B,A) P(A,B)=P(B,A), 所以有: P ( B ) P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P(B)P(A|B)=P(A)P(B|A) P(B)P(AB)=P(A)P(BA)两边同时除以P(B),则得到贝叶斯定理的表达式. 其中, P ( A ) P(A) P(A)是先验概率, P ( A ∣ B ) P(A|B) P(AB)是已知B发生后A的条件概率,也被称作后验概率.

朴素贝叶斯分类器

朴素贝叶斯分类器就是根据贝叶斯公式计算结果进行分类的模型,“朴素”指事件之间相互独立无影响. 例如:有如下数据集:
机器学习-朴素贝叶斯_第1张图片
求:”A very close game“ 是体育运动的概率?数学上表示为 P(Sports | a very close game)​. 根据贝叶斯定理,是运动的概率可以表示为: P ( S p o r t s ∣ a   v e r y   c l o s e   g a m e ) = P ( a   v e r y   c l o s e   g a m e ∣ s p o r t s ) ∗ P ( s p o r t s ) P ( a   v e r y   c l o s e   g a m e ) P(Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | sports) * P(sports)}{P(a \ very \ close \ game)} P(Sportsa very close game)=P(a very close game)P(a very close gamesports)P(sports)不是运动概率可以表示为: P ( N o t   S p o r t s ∣ a   v e r y   c l o s e   g a m e ) = P ( a   v e r y   c l o s e   g a m e ∣ N o t   s p o r t s ) ∗ P ( N o t   s p o r t s ) P ( a   v e r y   c l o s e   g a m e ) P(Not \ Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | Not \ sports) * P(Not \ sports)}{P(a \ very \ close \ game)} P(Not Sportsa very close game)=P(a very close game)P(a very close gameNot sports)P(Not sports)概率更大者即为分类结果. 由于分母相同,即比较分子谁更大即可. 我们只需统计”A very close game“ 多少次出现在Sports类别中,就可以计算出上述两个概率. 但是”A very close game“ 并没有出现在数据集中,所以这个概率为0,要解决这个问题,就假设每个句子的单词出现都与其它单词无关(事件独立即朴素的含义),所以,P(a very close game)可以写成:
P ( a   v e r y   c l o s e   g a m e ) = P ( a ) ∗ P ( v e r y ) ∗ P ( c l o s e ) ∗ P ( g a m e ) P(a \ very \ close \ game) = P(a) * P(very) * P(close) * P(game) P(a very close game)=P(a)P(very)P(close)P(game)
P ( a   v e r y   c l o s e   g a m e ∣ S p o r t s ) = P ( a ∣ S p o r t s ) ∗ P ( v e r y ∣ S p o r t s ) ∗ P ( c l o s e ∣ S p o r t s ) ∗ P ( g a m e ∣ S p o r t s ) P(a \ very \ close \ game|Sports)= \\ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports) Pa very close gameSports)=P(aSports)P(verySports)P(closeSports)P(gameSports)
统计出“a", “very”, “close”, "game"出现在"Sports"类别中的概率,就能算出其所属的类别.

在sklearn中,提供了三个朴素贝叶斯分类器,分别是:

  • GaussianNB(高斯朴素贝叶斯分类器):适合用于样本的值是连续的,数据呈正态分布的情况(比如人的身高、城市家庭收入、一次考试的成绩等等)
  • MultinominalNB(多项式朴素贝叶斯分类器):适合用于大部分属性为离散值的数据集
  • BernoulliNB(伯努利朴素贝叶斯分类器):适合用于特征值为二元离散值或是稀疏的多元离散值的数据集

你可能感兴趣的:(机器学习,概率论,机器学习,朴素贝叶斯算法)