1,提出一种创新的带有混合内存的自我进度(self-paced)对比学习框架。 其中,混合内存 动态生成 源域类级、 目标域聚类级和 无聚类实体集 的监督信号。
2,self-paced 方法可以生成更加可信的聚类来 精炼混合内存和 学习目标。
论文名称 | 简称 | 会议/期刊 | 出版年份 | baseline | backbone | 数据集 |
---|---|---|---|---|---|---|
Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID | SpCL | NIPS | 2020 | 【MMT】Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. In: International Conference on Learning Representations. pp. 1–15 (2020) | ImageNet-pretrained [7] ResNet-50 [18] ,use DBSCAN [9] for clustering | Market-1501\MSMT17 |
在线链接:https://proceedings.neurips.cc/paper/2020/file/821fa74b50ba3f7cba1e6c53e8fa6845-Paper.pdf
源码链接: https://github.com/yxgeee/SpCL.
1。we propose a novel self-paced contrastive learning framework with hybrid memory. The hybrid memory dynamically gen- erates source-domain class-level, target-domain cluster-level and un-clustered instance-level supervisory signals for learning feature representations. Different from the conventional contrastive learning strategy, the proposed framework jointly distinguishes source-domain classes, and target-domain clusters and un-clustered instances.
Our method outperforms state-of- the-arts on multiple domain adaptation tasks of object re-ID and even boosts the performance on the source domain without any extra annotations. Our general- ized version on unsupervised object re-ID surpasses state-of-the-art algorithms by considerable 16.7% and 7.9% on Market-1501 and MSMT17 benchmarks†
Figure 2: (a) The illustration of the proposed unified framework with a novel hybrid memory. (b) The proposed reliability criterion for measuring the cluster independence‡ and compactness
1,用于模型训练的数据分为三个部分。 源域带标注样本、目标域聚类伪标签样本,目标域无聚类实体样本(一个样本视为一个单独的类),整体的损失函数为 公式1。
2,混合内存中存储了两个部分的数据。 一是源域类中心特征{w},二是目标域所有的样本特征{v}。
3,对{v}进行聚类,可以得到目标域聚类伪标签 和 无聚类实体样本。对聚类的伪标签样本 求聚类中心,得到{c}(公式2),用于公式1的计算。
4,内存更新。w 和v 都是根据原有的版本和新计算的版本进行加权求和,分别如公式3和公式4所示。
5,Self-paced learning,决定如何划分目标域聚类伪标签样本和 无聚类实体样本。 设计了聚类独立性和紧凑性两个指标。独立性计算如公式5所示,紧凑性计算如公式6所示,最后通过两个指标来决定是否为聚类样本。
we preserve independent clusters with compact data points whose Rindep > α and Rcomp > β
1, 将数据分为三个部分这一点还是很具有创新性的,如图1所示,确实有更好的利用有限数据。
2,利用混合内存进行存储其实和hpla很相似,都把上一阶段的计算结果进行了存储。不同的是,他只进行了加权求和,而hpla进行了知识融合。
3,独立性和紧凑性设计思路很常见,可优化。
@inproceedings{DBLP:conf/nips/Ge0C0L20,
author = {Yixiao Ge and
Feng Zhu and
Dapeng Chen and
Rui Zhao and
Hongsheng Li},
title = {Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive
Object Re-ID},
booktitle = {NeurIPS},
year = {2020}
}
小样本学习与智能前沿(下方↓公众号)后台回复“SpCL,即可获得论文电子资源。
[1] Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 407–416 (2000)
[2] Campello, R.J., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 10(1), 1–51 (2015)
[3] Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7354–7362 (2019)
[4] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. International Conference on Machine Learning (2020)
[5] Chen, Y., Zhu, X., Gong, S.: Instance-guided context rendering for cross-domain person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 232–242 (2019)
[6] Choi, J., Jeong, M., Kim, T., Kim, C.: Pseudo-labeling curriculum for unsupervised domain adaptation. In: British Machine Vision Conference (BMVC) (2019)
[7] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255 (2009)
[8] Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 994–1003 (2018)
[9] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. p. 226–231. KDD’96, AAAI Press (1996)
[10] Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 6112–6121 (2019)
[11] Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. In: International Conference on Learning Representations. pp. 1–15 (2020)
[12]Ge, Y., Li, Z., Zhao, H., Yin, G., Yi, S., Wang, X., et al.: Fd-gan: Pose-guided feature distilling gan for robust person re-identification. In: Advances in neural information processing systems. pp. 1222–1233 (2018)
[13] Ge, Y., Wang, H., Zhu, F., Zhao, R., Li, H.: Self-supervising fine-grained region similarities for large-scale image localization. In: European Conference on Computer Vision (ECCV) (2020)
[14] Ge, Y., Zhu, F., Zhao, R., Li, H.: Structured domain adaptation with online relation regularization for unsupervised person re-id (2020)
[15] Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M.R., Huang, D.: Curriculumnet: Weakly supervised learning from large-scale web images. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 135–150 (2018)
[16] Guo, X., Liu, X., Zhu, E., Zhu, X., Li, M., Xu, X., Yin, J.: Adaptive self-paced deep clustering with data augmentation. IEEE Transactions on Knowledge and Data Engineering (2019)
[17] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738 (2020)
[18] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
[19] Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., Bengio, Y.: Learning deep representations by mutual information estimation and maximization. In: International Conference on Learning Representations. pp. 1–15 (2019)
[20] Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning. pp. 2304–2313 (2018)
[21] Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in neural information processing systems. pp. 1189–1197 (2010)
[22] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropaga- tion applied to handwritten zip code recognition. Neural computation 1(4), 541–551 (1989)
[23] Li, J., Zhang, S.: Joint visual and temporal consistency for unsupervised domain adaptive person re- identification. pp. 1–14 (2020)
[24] Lin, L., Wang, K., Meng, D., Zuo, W., Zhang, L.: Active self-paced learning for cost-effective and progressive face identification. IEEE transactions on pattern analysis and machine intelligence 40(1), 7–19 (2017)
[25] Lin, Y., Dong, X., Zheng, L., Yan, Y., Yang, Y.: A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8738–8745 (2019)
[26] Lin, Y., Xie, L., Wu, Y., Yan, C., Tian, Q.: Unsupervised person re-identification via softened similarity learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3390–3399 (2020)
[27] Liu, H., Tian, Y., Yang, Y., Pang, L., Huang, T.: Deep relative distance learning: Tell the difference between similar vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2167–2175 (2016)
[28] Liu, X., Liu, W., Mei, T., Ma, H.: A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In: European conference on computer vision. pp. 869–884. Springer (2016)
[29] Luo, C., Song, C., Zhang, Z.: Generalizing person re-identification by camera-aware invariance learning and cross-domain mixup. pp. 1–14 (2020)
[30] Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re- identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1–8 (2019)
[31] Mekhazni, D., Bhuiyan, A., Ekladious, G., Granger, E.: Unsupervised domain adaptation in the dissimilarity space for person re-identification. pp. 1–14 (2020)
[32] Naphade, M., Wang, S., Anastasiu, D., Tang, Z., Chang, M.C., Yang, X., Zheng, L., Sharma, A., Chellappa, R., Chakraborty, P.: The 4th ai city challenge (2020)
[33] Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. In: Advances in neural information processing systems (2018)
[34] Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: Enhancing learning and generalization capacities via ibn-net. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 464–479 (2018)
[35] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems. pp. 8026–8037 (2019)
[36] Riccitiello, J.: John riccitiello sets out to identify the engine of growth for unity technologies (interview). VentureBeat. Interview with Dean Takahashi. Retrieved January 18, 3 (2015)
[37] Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: European Conference on Computer Vision. pp. 17–35 (2016)
[38] Song, L., Wang, C., Zhang, L., Du, B., Zhang, Q., Huang, C., Wang, X.: Unsupervised domain adaptive re-identification: Theory and practice. Pattern Recognition 102, 107173 (2020)
[39] Sun, X., Zheng, L.: Dissecting person re-identification from the viewpoint of viewpoint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 608–617 (2019)
[40] Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., Wei, Y.: Circle loss: A unified perspective of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6398–6407 (2020)
[41] Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: Adapting object detectors from image to video. In: Advances in Neural Information Processing Systems. pp. 638–646 (2012)
[42] Tang, Z., Naphade, M., Birchfield, S., Tremblay, J., Hodge, W., Kumar, R., Wang, S., Yang, X.: Pamtri: Pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 211–220 (2019)
[43] Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in neural information processing systems. pp. 1195–1204 (2017)
[44] Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 1–14 (2020)
[45] Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10981–10990 (2020)
[46] Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer gan to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 79–88 (2018)
[47] Wu, A., Zheng, W.S., Lai, J.H.: Unsupervised person re-identification by camera-aware similarity consis- tency learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 6922–6931 (2019)
[48] Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimina- tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3733–3742 (2018)
[49] Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3415–3424 (2017)
[50] Yang, Q., Yu, H.X., Wu, A., Zheng, W.S.: Patch-based discriminative feature learning for unsupervised per- son re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3633–3642 (2019)
[51] Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. arXiv preprint arXiv:1912.08855 (2019)
[52] Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2148–2157 (2019)
[53] Zeng, K., Ning, M., Wang, Y., Guo, Y.: Hierarchical clustering with hard-batch triplet loss for person re- identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13657–13665 (2020)
[54] Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y.: Ad-cluster: Augmented discriminative clustering for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9021–9030 (2020)
[55] Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 8222–8231 (2019)
[56] Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2020–2030 (2017)
[57] Zhao, F., Liao, S., Xie, G.S., Zhao, J., Zhang, K., Shao, L.: Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. pp. 1–14 (2020)
[58] Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: A benchmark. In: Proceedings of the IEEE international conference on computer vision. pp. 1116–1124 (2015)
[59] Zheng, Z., Yang, X., Yu, Z., Zheng, L., Yang, Y., Kautz, J.: Joint discriminative and generative learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
[60] Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1318–1327 (2017)
[61] Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAAI. pp. 13001–13008 (2020)
[62] Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: Exemplar memory for domain adaptive person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 598–607 (2019)
[63] Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Learning to adapt invariance in memory for person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)
[64] Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3702–3712 (2019)
[65] Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 6002–6012 (2019)
[66] Zou, Y., Yang, X., Yu, Z., Kumar, B., Kautz, J.: Joint disentangling and adaptation for cross-domain person re-identification. pp. 1–14 (2020)
[67] Zou, Y., Yu, Z., Vijaya Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European conference on computer vision (ECCV). pp. 289–305 (2018)