实验题目: 实现拉普拉斯修正的朴素贝叶斯分类器
实验目的: 掌握朴素贝叶斯分类器的原理及应用
实验环境(硬件和软件) Anaconda/Jupyter notebook/Pycharm
实验内容:
编码实现拉普拉斯修正的朴素贝叶斯分类器,基于给定的训练数据,对测试样本进行判别。
要求:
一、已经给定部分代码,补充完整的代码,需要补充代码的地方已经用红色字体标注,包括:
(1)#补充计算条件概率的代码-1;
(2)#补充计算条件概率的代码-2;
(3)#补充预测代码;
二、将补充完整的代码提交,并提交实验结果;(也可以自己重写这部分的代码提交)
import numpy as np
def loaddata():
X = np.array([[1, 'S'], [1, 'M'], [1, 'M'], [1, 'S'],
[1, 'S'], [2, 'S'], [2, 'M'], [2, 'M'],
[2, 'L'], [2, 'L'], [3, 'L'], [3, 'M'],
[3, 'M'], [3, 'L'], [3, 'L']])
y = np.array([-1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1])
return X, y
# 训练、计算各个概率值
def Train(trainset, train_labels):
# 数据量
m = trainset.shape[0]
# 特征数
n = trainset.shape[1]
# 先验概率,key是类别值,value是类别的概率值
prior_probability = {}
# 条件概率,key的构造:类别,特征,特征值,value是
conditional_probability = {}
# 类别的可能取值
labels = set(train_labels)
# 计算先验概率,此时没有计算总数据量m
for label in labels:
prior_probability[label] = len(train_labels[train_labels == label]) + 1
print('prior_probabilit =', prior_probability)
# 计算条件概率
for i in range(m):
for j in range(n):
# key的构造:类别,特征,特征值
key = str(train_labels[i]) + ',' + str(j) + ',' + str(trainset[i][j])
if key in conditional_probability:
conditional_probability[key] += 1
else:
conditional_probability[key] = 1
print('conditional_probability = ', conditional_probability)
# 因字典在循环时不能改变,故定义新字典来保存值
conditional_probability_final = {}
for key in conditional_probability:
# 取出当前的类别
label = key.split(',')[0]
key1 = key.split(',')[1]
Ni = len(set(trainset[:, int(key1)]))
print(Ni)
conditional_probability_final[key] = (conditional_probability[key] + 1) / (prior_probability[int(label)] + Ni)
# 最终先验概率(除以总数据量m)
for label in labels:
prior_probability[label] = prior_probability[label] / (m + len(labels))
return prior_probability, conditional_probability_final, labels
# 定义预测函数
def predict(data):
result = {}
# 循环标签
for label in train_labels_set:
temp = 1.0
for j in range(len(data)):
key = str(label) + ',' + str(j) + ',' + str(data[j])
# 条件概率连乘
temp = temp * conditional_probability[key]
# 在乘上先验概率
result[label] = temp * prior_probability[label]
print('result =', result)
# 排序返回标签值
return sorted(result.items(), key=lambda x: x[1], reverse=True)[0][0]
X, y = loaddata()
prior_probability, conditional_probability, train_labels_set = Train(X, y)
print('conditional_probability = ', conditional_probability)
r_label = predict([2, 'S'])
print(' r_label =', r_label)
实验截图