20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML

原视频https://www.youtube.com/watch?v=KmQkDgu-Qp0​​​​​​​

        In complex systems,we know that there are low dimentional patterns and a few degrees of freedom that matter

Deep autoencoder for dynamics

        需要在普通的encoder-decoder基础上加一个f来学习系统的变化

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第1张图片

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第2张图片​​​​​​​ 

right coordinate system的重要性 

        选择以太阳为中心比地球为中心的系统要简单的多

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第3张图片

提到sindy+autoencoder的paper作为方法之一:

        Data-driven discovery of coordinates and governing equations

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第4张图片

提到的其他paper作为方法之二:

        Mardt, Pasquali, Wu, & Noé, Nat. Comm. 20 18 [arXiv:I7 10.06012] ——Deep learning of molecular kinetics

        Wehmeyer and Noé, J. Chem. Phys. 2018 [arXiv:l710.I 1239] ——Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics

        Yeung, Kundu, Hodas, 2017 [arXiv: 1708.06850]——Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems

        Takeishi, Kawahara, & Yairi, NeurlPS 2017 [arXiv:I710.04340] ——

        Otto and Rowley, SIADS 2019 [arXiv:I7 12.01378]——Linearly-Recurrent Autoencoder Networks for Learning Dynamics

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第5张图片​​​​​​​

Other         

        constrictive autoencoder might be more interpretable,you might be able to tease out relationships

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第6张图片

20221204Deep Learning to Discover Coordinates for Dynamics: Autoencoders & Physics Informed ML_第7张图片

conclude

        i've shown you two examples one is where f is sparse andnon-linear using our sindy approach,another perspective is where you try to find a coordinate embedding where f is actually linear this is a matrix and both of those are you know getting widely explored in the literature.

-----------------------------------------------------------------------------------------------

相关知识

Deep Auto_encoder

https://blog.csdn.net/one_super_dreamer/article/details/104198573

【机器学习】降维——SVD原理以及示例

https://www.imooc.com/article/267351?block_id=tuijian_wz

qr factorization

最优化方法——QR Factorization_显然易证的博客-CSDN博客

你可能感兴趣的:(paper,深度学习,人工智能)