- 好用的文本内容抽取关键词API接口调用示例
天聚数行
天行数据天行数据API接口tianapipython
用户输入的内容通常是一个不那么简洁的长尾词,通过抽取关键词接口就能快速抽取其中的核心词。该接口支持指定抽取数量和词性,其中num参数为可选,默认返回10个词语,999为不限数量。当指定wordtag参数为1时,返回一个包含词性的列表,例如把一大段文本中的人名或者把一篇文章里提到的地名单独提取出来。词性代码释义请参考中文智能分词接口词性代码释义。接口信息抽取一段文本信息中的核心关键词接口地址:htt
- AI时代来临,AI基础数据服务行业未来发展有哪些变化
标贝科技
人工智能数据库语言模型数据挖掘数据分析
AI基础数据服务是针对人工智能(AI)领域提供的一项服务,它包括数据采集、数据清洗、信息抽取和数据标注等服务。AI基础数据服务旨在为AI算法的训练和优化提供必要的数据支持,为AI算法的性能提供保障。标贝科技提供专业的数据采集、数据标注、训练数据集等AI基础数据服务内容,在基础数据行业拥有丰富的落地实践经验,据标贝科技的市场调研统计,2020中国AI行业核心产业市场规模将超过1500亿元,市场发展向
- NLP-预训练模型-中文:封神榜系列【姜子牙(通用大模型)、太乙(多模态)、二郎神(语言理解)、闻仲(语言生成)、燃灯(语言转换)、余元(领域)、...】
u013250861
LLM自然语言处理人工智能深度学习
封神榜模型系列简介系列名称需求适用任务参数规模备注姜子牙通用通用大模型>70亿参数通用大模型“姜子牙”系列,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力太乙特定多模态8千万-10亿参数应用于跨模态场景,包括文本图像生成,蛋白质结构预测,语音-文本表示等
- NLP学习——信息抽取
P-ShineBeam
NLP基础学习
信息抽取自动从半结构或无结构的文本中抽取出结构化信息的任务。常见的信息抽取任务有三类:实体抽取、关系抽取、事件抽取。1、实体抽取从一段文本中抽取出文本内容并识别为预定义的类别。实体抽取任务中的复杂问题:重复嵌套,原文中多个实体之间共享片段不连续,一个实体由多个不连续片段组成2、关系抽取从文本中抽取一对实体和预定义的关系类型。传统的关系抽取任务实现方案是先进行实体抽取,再输入头尾实体与原文进行关系分
- 信息抽取技术:电商领域的智能化革命与市场策略优化
思通数科x
运维大数据
一、引言在当今快速发展的互联网电商领域,信息抽取技术的应用已经成为商家优化供应链、降低成本、提高响应速度的关键手段。随着消费者需求的日益多样化和个性化,电子商务平台需要更高效、智能的数据处理能力来应对市场的挑战。从供应商管理到库存优化,再到物流协调,信息抽取技术正逐步渗透到电商运营的每一个环节。本文将探讨信息抽取技术如何帮助电商企业在激烈的市场竞争中保持领先地位,实现供应链的透明化、自动化和智能化
- 【8】知识加工
铁盒薄荷糖
知识图谱实战6+3天人工智能
一、概述对信息抽取/知识融合后得到的“事实”进行知识推理以拓展现有知识、得到新知识。知识加工主要包括三方面内容:本体构建、知识推理和质量评估。二、本体构建1.本体定义:本体是用于描述一个领域的术语集合,其组织结构是层次结构化的。简而言之,本体是用于描述一个领域的数据集合,是知识库的骨架。作用:获取、描述和表示相关领域的知识,提供对该领域知识的共同理解,确定领域内共同认可的词汇,提供该领域特定的概念
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
人工智能自然语言处理数据挖掘
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- 文本信息抽取模型介绍——实体抽取方法:NER模型(下)
合合技术团队
【通用文本信息抽取技术白皮书】ocr人工智能
3.1.4常用的实体抽取模型LatticeLSTM新加坡科技设计大学的研究者2018年在论文《ChineseNERUsingLatticeLSTM》中提出了新型中文命名实体地识别方法LatticeLSTM。作为信息抽取的一项基本任务,命名实体识别(NER)近年来一直受到研究人员的关注。该任务一直被作为序列标注问题来解决,其中实体边界和类别标签被联合预测。英文NER目前的最高水准是使用LSTM-CR
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
汀、人工智能
人工智能知识图谱LSTM分词算法信息抽取词性标注NLP
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- 教你打造智能知识图谱平台-构建企业知识图谱方法和应用
罗川社
1.知识图谱平台架构如何搭建上一篇文章讲过基础的搜索引擎可先不部署OCR功能,此时搭建的图谱功能只能称为一个简单的专家系统。如果想打造出成熟的图谱系统,还是不能偷懒,按照完整的图谱平台框架构建。如下图:图谱架构图2.模型训练工具(知识获取+知识融合):1.开放形知识领域:业内广泛采用NLP训练模型,实现海量数据的自动化抽取和构建。StandfordNLP提供了开放信息抽取OpenIE功能用于提取三
- (一)知识图谱原理与应用概述 上
韩韩吖吼
学习KG知识图谱人工智能
知识图谱(KnowledgeGraph)本质上是基于图的语义网络,表示实体和实体之间的关系构建知识图谱的目的,就是让机器人具备认知能力,理解这个世界。知识图谱与知识工程知识图谱是web和大数据时代的知识工程新的发展形态。知识工程的核心:知识库和推理引擎。领域本体的构建:面向特定领域的形式化地对于共享概念体系的明确而详细的说明。知识抽取:从海量的数据中通过信息抽取的方式获取知识。知识融合:通过对多个
- 通过与chatGPT交流实现零样本事件抽取
Ly大可爱
NLP事件抽取chatgpt人工智能
1、写作动机:近来的大规模语言模型(例如ChatGPT)在零样本设置下取得了很好的表现,这启发作者探索基于提示的方法来解决零样本IE任务。2、主要贡献:提出了基于chatgpt的多阶段的信息抽取方法:在第一阶段找出可能存在于句子中的相应元素类型。然后在第二阶段,对第一阶段中的每个元素类型执行链式信息抽取。每个阶段都采用了多轮QA过程。在每一轮中,基于设计的模板和先前提取的信息构造提示,作为输入向C
- Deepdive关系抽取:特征源码分析及优化加快信息提取
weixin_42001089
人工智能机器学习DDLIBNLPdeepdive
前言本篇不是Deepdive入门教程,而是对其一些源码细节进行了解读,换句话说要深入到内部去看看其具体是怎么做的,所以看本篇的前提是假设读者已经大概清楚了deepdive的使用流程,如果不是很熟悉,或是第一次使用建议先去看一下入门教程。本篇先是分析特征方面的源码,接着是实践部分,即使用ltp替换默认的斯坦福NLP信息抽取部分进而可优化该部分到数秒内,最后简单说一下其模型方面的问题以及其它补充其实关
- 多场景多任务学习在美团到店餐饮推荐的实践
文文学霸
学习人工智能深度学习
总第556篇2023年第008篇美团到店餐饮算法团队在跨域迁移学习的长期实践中,基于多场景的业务背景,提出了分层信息抽取网络,提升了多场景多任务的建模效果。相关技术方案形成的学术论文已经被国际数据工程会议ICDE2023收录,本文详细阐述了多场景多任务学习的解决方案,希望能给从事相关方向研究的同学带来一些帮助或启发。1.背景2.层次化信息抽取网络2.1问题定义2.2方法介绍2.3训练目标3.实验3
- 【论文】多场景多任务推荐
Citroooon
深度学习人工智能
ICDE2023|多场景多任务学习在美团到店餐饮推荐的实践背景:·多场景:美食关键词搜索、限时秒杀推荐、套餐推荐、商家商品推荐等。随着推荐场景数量的增加,传统地针对单个场景独立开发推荐模型有很多劣势和局限性·多任务:在这些场景中需要优化的指标是点击(CTR)和转化(CVR)本文提出了一种层次化信息抽取网络(HiNet)也就是一个端到端的两层信息抽取框架,来共同建模场景间和任务间的信息共享和协作,其
- 基于Prompt Learning的信息抽取
wang2008start
prompt信息抽取关系抽取实体识别文本分类
PTR:PromptTuningwithRulesforTextClassification清华;liuzhiyuan;通过规则制定subpromptRelationExtractionasOpen-bookExamination:Retrieval-enhancedPromptTuningRelationExtractionasOpen-bookExamination:Retrieval-enh
- 基于对比学习的信息抽取
wang2008start
对比学习信息抽取自然语言处理
LabelRefinementviaContrastiveLearningforDistantly-SupervisedNamedEntityRecognitionNAACL2022;做的远程监督NER,通过知识库构建伪标签,通过对比学习构建负样本,负样本是entity的多余部分或其他不相关部分。即对entity的start和end上面做负样本的构造和生成RCL:RelationContrasti
- 自然语言处理,基于预训练语言模型的方法,车万翔,引言部分
iKang_dlut
自然语言处理语言模型人工智能
文章目录自然语言处理应用任务1.信息抽取2.情感分析3.问答系统4.机器翻译5.对话系统自然语言处理应用任务1.信息抽取信息抽取(InformationExtraction,IE),是从非结构化的文本中,抽取出结构化信息的过程,通常包含以下这些子任务下面举一个例子,来说明这些子任务分别是干什么的,以及它们之间的差别是什么。不同信息抽取子任务,抽取的结果如下方表格所示:信息抽取子任务抽取结果命名实体
- 用通俗易懂的方式讲解:实体关系抽取入门教程
深度学习算法与自然语言处理
机器学习自然语言处理人工智能深度学习
信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节。实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系。本文为《实体关系抽取方法研究综述》论文的阅读笔记。文章目录技术提升关系抽取定义关系抽取评价指标实体关系抽取方法基于规则的关系抽取方法基于词典驱动的关系抽取方法基于机器学习的抽取方法基于深度学习的关系抽取方法流水线学习联合
- 13 | 使用代理ip爬取安居客房源信息
RunsenLIu
玩转Python爬虫tcp/ip网络协议网络
这是一个简单的Python爬虫代码,用于从安居客网站爬取房地产信息。该爬虫使用了代理IP来绕过可能的封禁,并提供了一些基本的信息抽取功能。如果访问过多,那么可能出现了验证码对此,最好的方法就是换ip。使用代理IP的主要目的是保护爬虫的稳定性和隐私。以下是一些常见的原因:反爬虫机制:很多网站为了防止被爬虫频繁访问,会采取一些反爬虫策略,比如IP封锁、验证码等。通过使用代理IP,可以更换请求的源IP,
- 文本挖掘与信息抽取:从非结构化数据中提取知识的关键技术
人工智能的光信号
人工智能
人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得点赞、关注、收藏、转发哦!进群扫码领资料文本挖掘和信息抽取是自然语言处理领域中的重要技术,它们可以帮助我们从大量的文本数据中提取出有用的信息和知识。本文将对文本挖掘和
- AAAI 2021 | 情感分析最新进展解读
智源社区
编程语言机器学习人工智能深度学习大数据
图片来源:网络作者:陆鑫,赵妍妍,秦兵单位:哈尔滨工业大学情感分析是自然语言处理中的一个重要研究领域,其相关应用在各种真实场景中发挥着重要作用。近年来,基于深度学习的方法逐渐成为情感分析的主流,一方面极大地提高了诸多传统情感分析任务的性能,如情感分类、情感信息抽取等;另一方面还促进了情感分析与其他领域的交叉融合,并衍生出了一系列新任务,如对话情感任务、多模态情感分析任务等。在AAAI2021上出现
- NLP应用场景及流程
MRfanfan
NLP自然语言处理机器学习人工智能
一、NLP主要应用场景:1.问答系统。2.情感分析:##股票价格预测##舆情监控##产品评论##事件监测3.机器翻译4.自动摘要(难度大)5.聊天机器人6.信息抽取具体问题为(李宏毅NLP):文本-----文本文本-----语音文本-----class(类别)语音-----文本语音-----语音语音-----class(类别)二、主要流程
- 【大语言模型NER处理-进行标注生成】
天池小天
语言模型人工智能自然语言处理
Qwen进行NER识别目录Qwen进行NER识别前言一、QWEN_NER1.引入库2.封装主函数相似度处理实际匹配标签(例子)获取结果总结前言chatgpt出来的时候就想过将其利用在信息抽取方面,后续也发现了不少基于这种大语言模型的信息抽取的论文,比如之前收集过的::https://github.com/cocacola-lab/GPT4IEhttps://github.com/RidongHan
- 用于生成信息提取的大型语言模型综述
AI知识图谱大本营
大模型人工智能
论文地址:https://arxiv.org/pdf/2312.17617.pdf代码仓库:https://github.com/quqxui/Awesome-LLM4IE-Papers信息抽取(IE)旨在从纯自然语言文本中提取结构化知识(如实体、关系和事件)。最近,生成式大型语言模型(LLMs)在文本理解和生成方面展示出了非凡的能力,可以在各个领域和任务中进行泛化。因此,许多研究提出了利用LLM
- “不缺钱,只缺人” ,同传翻译的那些事儿
飞桨PaddlePaddle
人工智能编程语言深度学习自然语言处理nlp
点击左上方蓝字关注我们项目简介“手把手带你学NLP”是基于飞桨PaddleNLP的系列实战项目。本系列由百度多位资深工程师精心打造,提供了从词向量、预训练语言模型,到信息抽取、情感分析、文本问答、结构化数据问答、文本翻译、机器同传、对话系统等实践项目的全流程讲解,旨在帮助开发者更全面清晰地掌握百度飞桨框架在NLP领域的用法,并能够举一反三、灵活使用飞桨框架和PaddleNLP进行NLP深度学习实践
- JioNLP:预处理、信息抽取、数据增强、NLP简单功能与词典,找它就对了!
jionlp数据分析
NLPPython数据增强自然语言处理数据挖掘深度学习神经网络信息抽取
⭐戳这里->JioNLP⭐戳这里=>在线直接使用版->JioNLP pipinstalljionlp来看看JioNLP能干什么?Ctrl+F搜索一下功能主要包括:文本清洗,去除HTML标签、异常字符、冗余字符,转换全角字母、数字、空格为半角,抽取及删除E-mail及域名、电话号码、QQ号、括号内容、身份证号、IP地址、URL超链接、货币金额与单位,解析身份证号信息、手机号码归属地、座机区号归属地
- KnowLM知识抽取大模型
dzysunshine
知识图谱大模型
文章目录KnowLM项目介绍KnowLM项目的动机ChatGPT存在的问题基于LLama的知识抽取的智析大模型数据集构建及训练过程预训练数据集构建预训练训练过程指令微调数据集构建指令微调训练过程开源的数据集及模型局限性信息抽取Prompt部署环境配置模型下载预训练模型使用LoRA模型使用KnowLM项目介绍KnowLM是由浙江大学NLP&KG团队的在读博士生研发并开源的项目,是一种将LLM与知识图
- 如何解决大模型的「幻觉」问题?
Debroon
医学大模型算法
如何解决大模型的「幻觉」问题?如何解决大模型的「幻觉」问题?幻觉产生原因?模型原因数据层面幻觉怎么评估?Reference-based(基于参考信息)基于模型的输入、预先定义的目标输出基于模型的输入Reference-Free(无参考信息)基于IE(信息抽取)基于QA(问题回答)基于NLI(自然语言推理)基于FactualnessClassificationMetric(使用一个度量标准)人工评估
- 一篇关于大模型在信息抽取(实体识别、关系抽取、事件抽取)的研究进展综述
AI知识图谱大本营
chatgpat知识图谱gpt
信息提取(IE)旨在从普通自然语言文本中提取结构化知识(如实体、关系和事件)。最近,生成式大型语言模型(LLMs)展现了在文本理解和生成方面的卓越能力,使得它们能够广泛应用于各种领域和任务。因此,已经有许多研究致力于利用LLMs的能力,为信息提取任务提供可行的解决方案。为了全面系统地回顾和探索LLMs在信息提取任务中的应用,本研究对这一领域的最新进展进行了调查。首先,我们进行了广泛的概述,将这些研
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&