Spark SQL RDD或DataFrame 行转列、列转行

行转列 Pivot函数应用

原始数据如下

+----+-----+
|code|value|
+----+-----+
|   a|    1|
|   b|    1|
|   c|    1|
|   d|    1|
|   e|    1|
|   f|    1|
+----+-----+

pivot函数效果


+----+----+----+----+----+----+----+----+
|code|   a|   b|   c|   d|   e|   f|temp|
+----+----+----+----+----+----+----+----+
|   f|null|null|null|null|null|   1|   1|
|   e|null|null|null|null|   1|null|   1|
|   d|null|null|null|   1|null|null|   1|
|   c|null|null|   1|null|null|null|   1|
|   b|null|   1|null|null|null|null|   1|
|   a|   1|null|null|null|null|null|   1|
+----+----+----+----+----+----+----+----+

+---+---+---+---+---+---+
|  a|  b|  c|  d|  e|  f|
+---+---+---+---+---+---+
|  1|  1|  1|  1|  1|  1|
+---+---+---+---+---+---+

实现代码

package myspark.sql

import myspark.warehouse.common.Base.getLocalSparkSession
import org.apache.spark.sql.functions.{col, lit}

object rowTurnColumn {

  def main(args: Array[String]): Unit = {

    val spark = getLocalSparkSession()
    import spark.implicits._
    val tuples = Seq(
      ("a", 1),
      ("b", 1),
      ("c", 1),
      ("d", 1),
      ("e", 1),
      ("f", 1)
    )

    val frame = tuples.toDF("code", "value")
    frame.show()
    val frame1 = frame.groupBy("code")
      .pivot("code")
      .sum("value")
      .withColumn("temp", lit("1"))
    frame1.show()
frame1.createOrReplaceTempView("frame1")
    spark.sql(
      s"""
         |select
         |${tuples.map(x=>{s"""sum(t1.${x._1}) as ${x._1}"""}).mkString(",")}
         |from frame1 t1
         |group by
         |t1.temp
         |""".stripMargin).show()
  }

}

行转列 :stack函数应用

+---+---+---+---+---+---+
|  a|  b|  c|  d|  e|  f|
+---+---+---+---+---+---+
|  1|  1|  1|  1|  1|  1|
+---+---+---+---+---+---+


+----+-----+
|code|value|
+----+-----+
|   a|    1|
|   b|    1|
|   c|    1|
|   d|    1|
|   e|    1|
|   f|    1|
+----+-----+

code如下

    // SELECT stack(n,expr1, ..., exprk) AS (alias1, alias2, ...) FROM myTable; 语法格式
    // 说明:stack(n, expr1, ..., exprk) - 会将expr1, ..., exprk 分割为n行.
    spark.sql(
      s"""
         |select
         |stack(${tuples.length},${tuples.map(x=>{s"'${x._1}',`${x._1}`"}).mkString(",")}) as (`code`,`value`)
         |from frame2 t1
         |""".stripMargin).show()

列转行:lateral view + explode()

参考资料:
https://www.cnblogs.com/hhelibeb/p/10310369.html

你可能感兴趣的:(Scala,Spark,spark,sql,大数据)