1.首先需要一个数据迭代器用来制造网络的输入部分
import random
import torch
torch.manual_seed(42) # 设置随机数种子
# 生成输入输出值X,Y
def synthetic_data(w, b, num_examples): # @save
X, Y = [], []
for i in range(num_examples):
x = torch.normal(0, 1, (1, len(w)))
y = torch.matmul(x, w) + b
if (y > torch.tensor([0])) == torch.tensor([True]):
y = torch.tensor([1, 0])
else:
y = torch.tensor([0, 1])
# y += torch.normal(0, 0.01, y.shape)
x = x.tolist()
y = y.tolist()
X.append(x[0])
Y.append(y)
return torch.tensor(X), torch.tensor(Y)
true_w = torch.tensor([2, -3.4, 5])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
test_features, test_labels = synthetic_data(true_w, true_b, 100)
# 数据迭代器
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
# 这些样本是随机读取的,没有特定的顺序
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(
indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
2. 设置一个网络结构,具体是一个有3维输入层,4,5,4维的隐藏层,2维的输出层,代码如下
class FNN:
"""
前馈神经网络
"""
def __init__(self, input_odes, hidden_nodes, output_nodes, lr):
self.inodes = input_odes # 第一层节点数量,即输入层节点数量
self.hnodes1, self.hnodes2, self.hnodes3 = hidden_nodes # 隐藏层节点数量
self.onodes = output_nodes # 输出层节点数量
self.wih = torch.normal(0.0, 1, (self.hnodes1, self.inodes)) # 输入层到隐藏层矩阵
self.whh1 = torch.normal(0.0, 1, (self.hnodes2, self.hnodes1)) # 隐藏层到隐藏层矩阵
self.whh2 = torch.normal(0.0, 1, (self.hnodes3, self.hnodes2))
self.who = torch.normal(0.0, 1, (self.onodes, self.hnodes3)) # 隐藏层到输出层矩阵
# print("self.wih.shape", self.wih.shape)
# print("self.whh1.shape", self.whh1.shape)
# print("self.whh2.shape", self.whh2.shape)
# print("self.who.shape", self.who.shape)
self.lr = lr # 学习率
self.activation = lambda x: torch.relu(x) # 激活函数
def ff_bp(self, inputs, targets):
"""
实现前馈和反向传播算法
"""
inputs = inputs.T # 输入转置
targets = targets.T # gold标签转置
# 以下是神经网络的前馈计算过程
hidden1 = torch.matmul(self.wih, inputs)
hidden1_output = self.activation(hidden1)
hidden2 = torch.matmul(self.whh1, hidden1_output)
hidden2_output = self.activation(hidden2)
hidden3 = torch.matmul(self.whh2, hidden2_output)
hidden3_output = self.activation(hidden3)
final = torch.matmul(self.who, hidden3_output)
final_output = self.activation(final)
# 反向传播算法部分
# 计算误差
output_error = targets - final_output
hidden3_error = torch.matmul(self.who.T, output_error)
hidden2_error = torch.matmul(self.whh2.T, hidden3_error)
hidden1_error = torch.matmul(self.whh1.T, hidden2_error)
# 根据学习率进行误差回传
self.who += self.lr * torch.matmul((output_error * final_output * (1.0 - final_output)), hidden3_output.T)
self.whh2 += self.lr * torch.matmul((hidden3_error * hidden3_output * (1.0 - hidden3_output)), hidden2_output.T)
self.whh1 += self.lr * torch.matmul((hidden2_error * hidden2_output * (1.0 - hidden2_output)), hidden1_output.T)
self.wih += self.lr * torch.matmul((hidden1_error * hidden1_output * (1.0 - hidden1_output)), inputs.T)
def query(self, inputs):
# 用于测试,相当于model.eval()模式
inputs = inputs.T
hidden1 = torch.matmul(self.wih, inputs)
hidden1_output = self.activation(hidden1)
hidden2 = torch.matmul(self.whh1, hidden1_output)
hidden2_output = self.activation(hidden2)
hidden3 = torch.matmul(self.whh2, hidden2_output)
hidden3_output = self.activation(hidden3)
final = torch.matmul(self.who, hidden3_output)
final_output = self.activation(final)
return final_output
3. 具体实现
# 网络的实例化
nn = FNN(3, (4, 5, 4), 2, 0.001)
epochs = 15 # 迭代次数
# 进行训练
for epoch in range(epochs):
for x, y in data_iter(1, features, labels):
nn.ff_bp(x, y)
result = [] # 输出的结果表
# 进行查询和最后的结果转换
for x, y in data_iter(1, test_features, test_labels):
label = nn.query(x)
pos = torch.argmax(label)
# print(y.shape)
if pos == 0:
label = torch.tensor([[1, 0]])
else:
label = torch.tensor([[0, 1]])
# print(label, y)
if torch.equal(label, y):
result.append(1)
else:
result.append(0)
total = 0
for ele in range(0, len(result)):
total = total + result[ele]
print("正确率为:{:.2f}".format(total / len(result)))