bp神经网络回归预测模型(python实现)_神经网络实现连续型变量的回归预测(python)...

转至:https://blog.csdn.net/langb2014/article/details/50488727

输入数据变为房价预测:

105.0,2,0.89,510.0

105.0,2,0.89,510.0

138.0,3,0.27,595.0

135.0,3,0.27,596.0

106.0,2,0.83,486.0

105.0,2,0.89,510.0

105.0,2,0.89,510.0

143.0,3,0.83,560.0

108.0,2,0.91,450.0

最近写论文时用到一个方法,是基于神经网络的最优组合预测,主要思想如下:在建立由回归模型、灰色预测模型、BP神经网络预测模型组成的组合预测模型库的基础上,利用以上三种单一预测模型的组合构成BP神经网络组合预测模型。(我是参考的参考这篇文章:路玉龙,韩靖,余思婧,张鸿雁.BP神经网络组合预测在城市生活垃圾产量预测中应用)

我的目的

我需要用BP神经网络来做连续预测。关于BP神经网络的python实现网上有很多,但大多是用于分类决策,于是不得不搞清楚原理改代码。

以下是我参考的一篇BP神经网络的分类决策的实现(我的连续预测的代码是基于下面这个链接改的,在此致谢一下):

https://www.cnblogs.com/Finley/p/5946000.html

修改思路:

(1)最后一层不激活,直接输出。或者说把激活函数看作f(x)=x

(2)损失函数函数改为MSE

代码

代码中用两个#——-围起来的就是我更正的部分。

import math

import random

random.seed(0)

def rand(a, b):

return (b - a) * random.random() + a

def make_matrix(m, n, fill=0.0):

mat = []

for i in range(m):

mat.append([fill] * n)

return mat

def sigmoid(x):

return 1.0 / (1.0 + math.exp(-x))

def sigmoid_derivative(x):

return x * (1 - x)

class BPNeuralNetwork:

def __init__(self):

self.input_n = 0

self.hidden_n = 0

self.output_n = 0

self.input_cells = []

self.hidden_cells = []

self.output_cells = []

self.input_weights = []

self.output_weights = []

self.input_correction = []

self.output_correction = []

def setup(self, ni, nh, no):

self.input_n = ni + 1

self.hidden_n = nh

self.output_n = no

# init cells

self.input_cells = [1.0] * self.input_n

self.hidden_cells = [1.0] * self.hidden_n

self.output_cells = [1.0] * self.output_n

# init weights

self.input_weights = make_matrix(self.input_n, self.hidden_n)

self.output_weights = make_matrix(self.hidden_n, self.output_n)

# random activate

for i in range(self.input_n):

for h in range(self.hidden_n):

self.input_weights[i][h] = rand(-0.2, 0.2)

for h in range(self.hidden_n):

for o in range(self.output_n):

self.output_weights[h][o] = rand(-2.0, 2.0)

# init correction matrix

self.input_correction = make_matrix(self.input_n, self.hidden_n)

self.output_correction = make_matrix(self.hidden_n, self.output_n)

def predict(self, inputs):

# activate input layer

for i in range(self.input_n - 1):

self.input_cells[i] = inputs[i]#输入层输出值

# activate hidden layer

for j in range(self.hidden_n):

total = 0.0

for i in range(self.input_n):

total += self.input_cells[i] * self.input_weights[i][j]#隐藏层输入值

self.hidden_cells[j] = sigmoid(total)#隐藏层的输出值

# activate output layer

for k in range(self.output_n):

total = 0.0

for j in range(self.hidden_n):

total += self.hidden_cells[j] * self.output_weights[j][k]

#-----------------------------------------------

# self.output_cells[k] = sigmoid(total)

self.output_cells[k] =total#输出层的激励函数是f(x)=x

#-----------------------------------------------

return self.output_cells[:]

def back_propagate(self, case, label, learn, correct):#x,y,修改最大迭代次数, 学习率λ, 矫正率μ三个参数.

# feed forward

self.predict(case)

# get output layer error

output_deltas = [0.0] * self.output_n

for o in range(self.output_n):

error = label[o] - self.output_cells[o]

#-----------------------------------------------

# output_deltas[o] = sigmoid_derivative(self.output_cells[o]) * error

output_deltas[o] = error

#-----------------------------------------------

# get hidden layer error

hidden_deltas = [0.0] * self.hidden_n

for h in range(self.hidden_n):

error = 0.0

for o in range(self.output_n):

error += output_deltas[o] * self.output_weights[h][o]

hidden_deltas[h] = sigmoid_derivative(self.hidden_cells[h]) * error

# update output weights

for h in range(self.hidden_n):

for o in range(self.output_n):

change = output_deltas[o] * self.hidden_cells[h]

self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]#??????????

self.output_correction[h][o] = change

# update input weights

for i in range(self.input_n):

for h in range(self.hidden_n):

change = hidden_deltas[h] * self.input_cells[i]

self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]

self.input_correction[i][h] = change

# get global error

error = 0.0

for o in range(len(label)):

error += 0.5 * (label[o] - self.output_cells[o]) ** 2

return error

def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):

for j in range(limit):

error = 0.0

for i in range(len(cases)):

label = labels[i]

case = cases[i]

error += self.back_propagate(case, label, learn, correct)

def test(self):

cases = [

[10.5,2,0.89],

[10.5,2,0.89],

[13.8,3,0.27],

[13.5,3,0.27],

]

labels = [[0.51], [0.51], [0.595], [0.596]]

self.setup(3, 5, 1)

self.train(cases, labels, 10000, 0.05, 0.1)

for case in cases:

print(self.predict(case))

if __name__ == '__main__':

nn = BPNeuralNetwork()

nn.test()

实验结果:

[0.5095123779256603]

[0.5095123779256603]

[0.5952606219141522]

[0.5939697670509705]

你可能感兴趣的:(bp神经网络回归预测模型(python实现)_神经网络实现连续型变量的回归预测(python)...)