SparkSQL 概述

一、SparkSQL是什么

SparkSQL 概述_第1张图片
Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块。

二、Hive and SparkSQL

  SparkSQL的前身是Shark,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具。

  Hive是早期唯一运行在Hadoop上的SQL-on-Hadoop工具。但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率,为了提高SQL-on-Hadoop的效率,大量的SQL-on-Hadoop工具开始产生,其中表现较为突出的是:

  • Drill
  • Impala
  • Shark

  其中Shark是伯克利实验室Spark生态环境的组件之一,是基于Hive所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在Spark引擎上。
SparkSQL 概述_第2张图片
Shark的出现,使得SQL-on-Hadoop的性能比Hive有了10-100倍的提高。
SparkSQL 概述_第3张图片
  但是,随着Spark的发展,对于野心勃勃的Spark团队来说,Shark对于Hive的太多依赖(如采用Hive的语法解析器、查询优化器等等),制约了Spark的One Stack Rule Them All的既定方针,制约了Spark各个组件的相互集成,所以提出了SparkSQL项目。SparkSQL抛弃原有Shark的代码,汲取了Shark的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓“退一步,海阔天空”。

  • 数据兼容方面 SparkSQL不但兼容Hive,还可以从RDD、parquet文件、JSON文件中获取数据,未来版本甚至支持获取RDBMS数据以及cassandra等NOSQL数据;
  • 性能优化方面 除了采取In-Memory Columnar Storage、byte-code generation等优化技术外、将会引进Cost Model对查询进行动态评估、获取最佳物理计划等等;
  • 组件扩展方面 无论是SQL的语法解析器、分析器还是优化器都可以重新定义,进行扩展。
    SparkSQL 概述_第4张图片
      2014年6月1日Shark项目和SparkSQL项目的主持人Reynold Xin宣布:停止对Shark的开发,团队将所有资源放SparkSQL项目上,至此,Shark的发展画上了句话,但也因此发展出两个支线:SparkSQLHive on Spark
    SparkSQL 概述_第5张图片
      其中SparkSQL作为Spark生态的一员继续发展,而不再受限于Hive,只是兼容Hive;而Hive on Spark是一个Hive的发展计划,该计划将Spark作为Hive的底层引擎之一,也就是说,Hive将不再受限于一个引擎,可以采用Map-Reduce、Tez、Spark等引擎。
      对于开发人员来讲,SparkSQL可以简化RDD的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是SparkSQL。Spark SQL为了简化RDD的开发,提高开发效率,提供了2个编程抽象,类似Spark Core中的RDD,即DataFrameDataSet

三、SparkSQL特点

3.1 易整合

无缝的整合了 SQL 查询和 Spark 编程
SparkSQL 概述_第6张图片

3.2 统一的数据访问

使用相同的方式连接不同的数据源
SparkSQL 概述_第7张图片

3.3 兼容Hive

在已有的仓库上直接运行 SQL 或者 HiveQL
SparkSQL 概述_第8张图片

3.4 标准数据连接

通过 JDBC 或者 ODBC 来连接
SparkSQL 概述_第9张图片

四、DataFrame是什么

  在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
  同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从 API 易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API 要更加友好,门槛更低。
SparkSQL 概述_第10张图片
上图直观地体现了DataFrame和RDD的区别。
  左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
  DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张来对待
  DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化。比如下面一个例子:
SparkSQL 概述_第11张图片
  为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
SparkSQL 概述_第12张图片

五、DataSet是什么

  DataSet是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。

  • DataSet是DataFrame API的一个扩展,是SparkSQL最新的数据抽象
  • 用户友好的API风格,既具有类型安全检查也具有DataFrame的查询优化特性;
  • 样例类来对DataSet中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称;
  • DataSet是强类型的。比如可以有DataSet[Car],DataSet[Person]。
  • DataFrame是DataSet的特列,DataFrame=DataSet[Row],所以可以通过as方法将DataFrame转换为DataSet。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息都用Row来表示。获取数据时需要指定顺序

你可能感兴趣的:(大数据,spark,big,data,大数据)