import cv2
import numpy as np
def aHash(img):
img = cv2.resize(img, (8, 8))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
s = 0
hash_str = ''
for i in range(8):
for j in range(8):
s = s + gray[i, j]
avg = s / 64
for i in range(8):
for j in range(8):
if gray[i, j] > avg:
hash_str = hash_str + '1'
else:
hash_str = hash_str + '0'
return hash_str
def dHash(img):
img = cv2.resize(img, (9, 8))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hash_str = ''
for i in range(8):
for j in range(8):
if gray[i, j] > gray[i, j + 1]:
hash_str = hash_str + '1'
else:
hash_str = hash_str + '0'
return hash_str
def pHash(img):
img = cv2.resize(img, (32, 32))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dct = cv2.dct(np.float32(gray))
dct_roi = dct[0:8, 0:8]
hash = []
avreage = np.mean(dct_roi)
for i in range(dct_roi.shape[0]):
for j in range(dct_roi.shape[1]):
if dct_roi[i, j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
def classify_hist_with_split(image1, image2, size=(256, 256)):
image1 = cv2.resize(image1, size)
image2 = cv2.resize(image2, size)
sub_image1 = cv2.split(image1)
sub_image2 = cv2.split(image2)
sub_data = 0
for im1, im2 in zip(sub_image1, sub_image2):
sub_data += calculate(im1, im2)
sub_data = sub_data / 3
return sub_data
def calculate(image1, image2):
hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
else:
degree = degree + 1
degree = degree / len(hist1)
return degree
def cmpHash(hash1, hash2):
n = 0
if len(hash1) != len(hash2):
return -1
for i in range(len(hash1)):
if hash1[i] != hash2[i]:
n = n + 1
return n
img1 = cv2.imread(r'C:\Users\17567\Desktop\1.png')
img2 = cv2.imread(r'C:\Users\17567\Desktop\2.png')
img1 = cv2.imread(r'C:\Users\17567\Desktop\1.png')
img2 = cv2.imread(r'C:\Users\17567\Desktop\2.png')
img1 = cv2.imread(r'C:\Users\17567\Desktop\1.png')
img2 = cv2.imread(r'C:\Users\17567\Desktop\2.png')
img1 = cv2.imread(r'C:\Users\17567\Desktop\1.png')
img2 = cv2.imread(r'C:\Users\17567\Desktop\2.png')
img1 = cv2.imread(r'C:\Users\17567\Desktop\1.png')
img2 = cv2.imread(r'C:\Users\17567\Desktop\2.png')
hash1 = aHash(img1)
hash2 = aHash(img2)
n = cmpHash(hash1, hash2)
print('均值哈希算法相似度:', n)
hash1 = dHash(img1)
hash2 = dHash(img2)
n = cmpHash(hash1, hash2)
print('差值哈希算法相似度:', n)
hash1 = pHash(img1)
hash2 = pHash(img2)
n = cmpHash(hash1, hash2)
print('感知哈希算法相似度:', n)
n = classify_hist_with_split(img1, img2)
print('三直方图算法相似度:', n)