基于Python和OpenCV常见的图像相似度比较哈希算法实现

简述

相似图像搜索的哈希算法有三种:

  • 均值哈希算法
  • 差值哈希算法
  • 感知哈希算法

均值哈希算法

步骤

  1. 缩放:图片缩放为8*8,保留结构,出去细节。
  2. 灰度化:转换为256阶灰度图。
  3. 求平均值:计算灰度图所有像素的平均值。
  4. 比较:像素值大于平均值记作1,相反记作0,总共64位。
  5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。
  6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。

代码实现:

#均值哈希算法
def aHash(img):
    #缩放为8*8
    img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
    #转换为灰度图
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    #s为像素和初值为0,hash_str为hash值初值为''
    s=0
    hash_str=''
    #遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s=s+gray[i,j]
    #求平均灰度
    avg=s/64
    #灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if  gray[i,j]>avg:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'            
    return hash_str
  • 差值哈希算法

差值哈希算法前期和后期基本相同,只有中间比较hash有变化。

步骤 
1. 缩放:图片缩放为8*9,保留结构,出去细节。 
2. 灰度化:转换为256阶灰度图。 
3. 求平均值:计算灰度图所有像素的平均值。 
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位 
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。顺序不固定。但是比较时候必须是相同的顺序。 
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。


#差值感知算法
def dHash(img):
    #缩放8*8
    img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
    #转换灰度图
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    hash_str=''
    #每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if   gray[i,j]>gray[i,j+1]:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'
    return hash_str

感知哈希算法

感知哈希算法可以参考 
相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三) 
讲的很详细了。

pHash代码实现:

def pHash(imgfile):
    """get image pHash value"""
    #加载并调整图片为32x32灰度图片
    img=cv2.imread(imgfile, 0)
    img=cv2.resize(img,(64,64),interpolation=cv2.INTER_CUBIC)

        #创建二维列表
    h, w = img.shape[:2]
    vis0 = np.zeros((h,w), np.float32)
    vis0[:h,:w] = img       #填充数据

    #二维Dct变换
    vis1 = cv2.dct(cv2.dct(vis0))
    #cv.SaveImage('a.jpg',cv.fromarray(vis0)) #保存图片
    vis1.resize(32,32)
    #把二维list变成一维list
    img_list = vis1.flatten()

    #计算均值
    avg = sum(img_list)*1./len(img_list)
    avg_list = ['0' if i0时表示以彩色方式读入图片 
flags=0时表示以灰度图方式读入图片 
flags<0时表示以图片的本来的格式读入图片

interpolation - 插值方法。共有5种:
1)INTER_NEAREST - 最近邻插值法
2)INTER_LINEAR - 双线性插值法(默认)
3)INTER_AREA - 基于局部像素的重采样(resampling using pixel area relation)。对于图像抽取(image decimation)来说,这可能是一个更好的方法。但如果是放大图像时,它和最近邻法的效果类似。
4)INTER_CUBIC - 基于4x4像素邻域的3次插值法
5)INTER_LANCZOS4 - 基于8x8像素邻域的Lanczos插值
'''

Hash值对比

由于返回值为str字符串,所以直接遍历字符串进行比对。

#Hash值对比
def cmpHash(hash1,hash2):
    n=0
    #hash长度不同则返回-1代表传参出错
    if len(hash1)!=len(hash2):
        return -1
    #遍历判断
    for i in range(len(hash1)):
        #不相等则n计数+1,n最终为相似度
        if hash1[i]!=hash2[i]:
            n=n+1
    return n

总结

完整代码

import cv2
import  numpy as np

#均值哈希算法
def aHash(img):
    #缩放为8*8
    img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
    #转换为灰度图
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    #s为像素和初值为0,hash_str为hash值初值为''
    s=0
    hash_str=''
    #遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s=s+gray[i,j]
    #求平均灰度
    avg=s/64
    #灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if  gray[i,j]>avg:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'            
    return hash_str

#差值感知算法
def dHash(img):
    #缩放8*8
    img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
    #转换灰度图
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    hash_str=''
    #每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if   gray[i,j]>gray[i,j+1]:
                hash_str=hash_str+'1'
            else:
                hash_str=hash_str+'0'
    return hash_str

#Hash值对比
def cmpHash(hash1,hash2):
    n=0
    #hash长度不同则返回-1代表传参出错
    if len(hash1)!=len(hash2):
        return -1
    #遍历判断
    for i in range(len(hash1)):
        #不相等则n计数+1,n最终为相似度
        if hash1[i]!=hash2[i]:
            n=n+1
    return n

img1=cv2.imread('walk_m.jpg')
img2=cv2.imread('walks1.jpg')
hash1= aHash(img1)
hash2= aHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print('均值哈希算法相似度:',n)


hash1= dHash(img1)
hash2= dHash(img2)
print(hash1)
print(hash2)
n=cmpHash(hash1,hash2)
print('差值哈希算法相似度:',n)

测试图像两张如下

基于Python和OpenCV常见的图像相似度比较哈希算法实现_第1张图片

测试结果如下:

基于Python和OpenCV常见的图像相似度比较哈希算法实现_第2张图片

根据不同的实际情况测试,选择自己合适的相似度算法才是最好的。

你可能感兴趣的:(python,opencv,哈希算法)