1.箱型图。
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p1=sns.boxplot( y=df["sepal_length"] )
plt.show()
#保存图片
fig = p1.get_figure()
fig.set_size_inches(4.8, 4.8)
fig.savefig('PNG/#30_Basic_Box_seaborn1.png')
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p2=sns.boxplot( x=df["species"], y=df["sepal_length"] )
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p1=sns.boxplot( y=df["species"], x=df["sepal_length"] )
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p1=sns.boxplot( x=df["species"], y=df["sepal_length"], linewidth=5)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p2=sns.boxplot( x=df["species"], y=df["sepal_length"], notch=True)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p3=sns.boxplot( x=df["species"], y=df["sepal_length"], width=0.3)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p1=sns.boxplot( x=df["species"], y=df["sepal_length"], palette="Blues")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p2=sns.boxplot( x=df["species"], y=df["sepal_length"], color="skyblue")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
p3=sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
p4=sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
ax = sns.boxplot(x='species', y='sepal_length', data=df)
for patch in ax.artists:
r, g, b, a = patch.get_facecolor()
patch.set_facecolor((r, g, b, .3))
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('tips')
p1=sns.boxplot(x="day", y="total_bill", hue="smoker", data=df, palette="Set1")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
p1=sns.boxplot(x='species', y='sepal_length', data=df, order=["virginica", "versicolor", "setosa"])
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
p2=sns.boxplot(x='species', y='sepal_length', data=df, order=my_order)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
ax = sns.boxplot(x='species', y='sepal_length', data=df)
ax = sns.swarmplot(x='species', y='sepal_length', data=df, color="grey")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset('iris')
ax = sns.boxplot(x="species", y="sepal_length", data=df)
# 计算obs和中位数并设置标签
medians = df.groupby(['species'])['sepal_length'].median().values
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
# 将其添加到图片上
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
ax.text(pos[tick], medians[tick] + 0.03, nobs[tick],
horizontalalignment='center', size='x-small', color='w', weight='semibold')
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi))
# 数据:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
# 普通的箱型图
sns.boxplot(x='group', y='value', data=df)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi))
# 数据:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
ax = sns.boxplot(x='group', y='value', data=df)
ax = sns.stripplot(x='group', y='value', data=df, color="orange", jitter=0.2, size=2.5)
plt.title("Boxplot with jitter", loc="left")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi))
# 数据:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
sns.violinplot( x='group', y='value', data=df)
plt.title("Violin plot", loc="left")
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi))
# 数据:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
ax = sns.boxplot(x="group", y="value", data=df)
medians = df.groupby(['group'])['value'].median().values
nobs = df.groupby("group").size().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
plt.text(pos[tick], medians[tick] + 0.4, nobs[tick], horizontalalignment='center', size='medium', color='w', weight='semibold')
plt.title("Boxplot with number of observation", loc="left")
plt.show()
本博主新开公众号, 希望大家能扫码关注一下,十分感谢大家。
本文来自:https://github.com/holtzy/The-Python-Graph-Gallery/blob/master/PGG_notebook.py