Cosine decay with warmup和 周期性学习率(CLR)(学习率更新方式)

Cosine decay with warmup: 

import numpy as np
from tensorflow import keras
from keras import backend as K


# 带有warm-up的cosine学习率

def cosine_decay_with_warmup(global_step,
                             learning_rate_base,
                             total_steps,
                             warmup_learning_rate=0.0,
                             warmup_steps=0,
                             hold_base_rate_steps=0):
    """Cosine decay schedule with warm up period.
    Cosine annealing learning rate as described in:
      Loshchilov and Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts.
      ICLR 2017. https://arxiv.org/abs/1608.03983
    In this schedule, the learning rate grows linearly from warmup_learning_rate
    to learning_rate_base for warmup_steps, then transitions to a cosine decay
    schedule.
    Arguments:
        global_step {int} -- global step.
        learning_rate_base {float} -- base learning rate.
        total_steps {int} -- total number of training steps.
    Keyword Arguments:
        warmup_learning_rate {float} -- initial learning rate for warm up. (default: {0.0})
        warmup_steps {int} -- number of warmup steps. (default: {0})
        hold_base_rate_steps {int} -- Optional number of steps to hold base learning rate
                                    before decaying. (default: {0})
    Returns:
      a float representing learning rate.
    Raises:
      ValueError: if warmup_learning_rate is larger than learning_rate_base,
        or if warmup_steps is larger than total_steps.
    """

    if total_steps < warmup_steps:
        raise ValueError('total_steps must be larger or equal to '
                         'warmup_steps.')
    learning_rate = 0.5 * learning_rate_base * (1 + np.cos(
        np.pi *
        (global_step - warmup_steps - hold_base_rate_steps
         ) / float(total_steps - warmup_steps - hold_base_rate_steps)))
    if hold_base_rate_steps > 0:
        learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,
                                 learning_rate, learning_rate_base)
    if warmup_steps > 0:
        if learning_rate_base < warmup_learning_rate:
            raise ValueError('learning_rate_base must be larger or equal to '
                             'warmup_learning_rate.')
        slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
        warmup_rate = slope * global_step + warmup_learning_rate
        learning_rate = np.where(global_step < warmup_steps, warmup_rate,
                                 learning_rate)
    return np.where(global_step > total_steps, 0.0, learning_rate)


class WarmUpCosineDecayScheduler(keras.callbacks.Callback):
    """Cosine decay with warmup learning rate scheduler
    """

    def __init__(self,
                 learning_rate_base,
                 total_steps,
                 global_step_init=0,
                 warmup_learning_rate=0.0,
                 warmup_steps=0,
                 hold_base_rate_steps=0,
                 verbose=0):
        """Constructor for cosine decay with warmup learning rate scheduler.
    Arguments:
        learning_rate_base {float} -- base learning rate.
        total_steps {int} -- total number of training steps.
    Keyword Arguments:
        global_step_init {int} -- initial global step, e.g. from previous checkpoint.
        warmup_learning_rate {float} -- initial learning rate for warm up. (default: {0.0})
        warmup_steps {int} -- number of warmup steps. (default: {0})
        hold_base_rate_steps {int} -- Optional number of steps to hold base learning rate
                                    before decaying. (default: {0})
        verbose {int} -- 0: quiet, 1: update messages. (default: {0})
        """

        super(WarmUpCosineDecayScheduler, self).__init__()
        self.learning_rate_base = learning_rate_base
        self.total_steps = total_steps
        self.global_step = global_step_init
        self.warmup_learning_rate = warmup_learning_rate
        self.warmup_steps = warmup_steps
        self.hold_base_rate_steps = hold_base_rate_steps
        self.verbose = verbose
        self.learning_rates = []

    def on_batch_end(self, batch, logs=None):
        self.global_step = self.global_step + 1
        lr = K.get_value(self.model.optimizer.lr)
        self.learning_rates.append(lr)

    def on_batch_begin(self, batch, logs=None):
        lr = cosine_decay_with_warmup(global_step=self.global_step,
                                      learning_rate_base=self.learning_rate_base,
                                      total_steps=self.total_steps,
                                      warmup_learning_rate=self.warmup_learning_rate,
                                      warmup_steps=self.warmup_steps,
                                      hold_base_rate_steps=self.hold_base_rate_steps)
        K.set_value(self.model.optimizer.lr, lr)
        if self.verbose > 0:
            print('\nBatch %05d: setting learning '
                  'rate to %s.' % (self.global_step + 1, lr))


if __name__ == '__main__':
    from keras.models import Sequential
    from keras.layers import Dense

    # Create a model.
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(10, activation='softmax'))
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    # Number of training samples.
    # gen1
    sample_count = 12608
    # gen

    # Total epochs to train.
    epochs = 50

    # Number of warmup epochs.
    warmup_epoch = 10

    # Training batch size, set small value here for demonstration purpose.
    batch_size = 16

    # Base learning rate after warmup.
    learning_rate_base = 0.0001

    total_steps = int(epochs * sample_count / batch_size)

    # Compute the number of warmup batches.
    warmup_steps = int(warmup_epoch * sample_count / batch_size)

    # Generate dummy data.
    data = np.random.random((sample_count, 100))
    labels = np.random.randint(10, size=(sample_count, 1))

    # Convert labels to categorical one-hot encoding.
    one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)

    # Compute the number of warmup batches.
    warmup_batches = warmup_epoch * sample_count / batch_size

    # Create the Learning rate scheduler.
    warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
                                            total_steps=total_steps,
                                            warmup_learning_rate=4e-06,
                                            warmup_steps=warmup_steps,
                                            hold_base_rate_steps=5,
                                            )

    # Train the model, iterating on the data in batches of 32 samples
    model.fit(data, one_hot_labels, epochs=epochs, batch_size=batch_size,
              verbose=0, callbacks=[warm_up_lr])

    import matplotlib.pyplot as plt

    plt.plot(warm_up_lr.learning_rates)
    plt.xlabel('Step', fontsize=20)
    plt.ylabel('lr', fontsize=20)
    plt.axis([0, total_steps, 0, learning_rate_base * 1.1])
    plt.xticks(np.arange(0, epochs, 1))
    plt.grid()
    plt.title('Cosine decay with warmup', fontsize=20)
    plt.show()

效果:

Cosine decay with warmup和 周期性学习率(CLR)(学习率更新方式)_第1张图片

周期性学习率(CLR):

from keras.callbacks import *
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Input
from keras.optimizers import *
import matplotlib.pyplot as plt

'''循环学习率是学习率调整的策略,其在周期性质中将学习率从基值增加。
   通常,周期的频率是恒定的,但是振幅通常在每个周期或每个小批量迭代中动态地缩放。
    '''
class CyclicLR(Callback):
    """This callback implements a cyclical learning rate policy (CLR).
    The method cycles the learning rate between two boundaries with
    some constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).
    The amplitude of the cycle can be scaled on a per-iteration or
    per-cycle basis.
    This class has three built-in policies, as put forth in the paper.
    "triangular":
        A basic triangular cycle w/ no amplitude scaling.
    "triangular2":
        A basic triangular cycle that scales initial amplitude by half each cycle.
    "exp_range":
        A cycle that scales initial amplitude by gamma**(cycle iterations) at each
        cycle iteration.
    For more detail, please see paper.

    # Example
        ```python
            clr = CyclicLR(base_lr=0.001, max_lr=0.006,
                                step_size=2000., mode='triangular')
            model.fit(X_train, Y_train, callbacks=[clr])
        ```

    Class also supports custom scaling functions:
        ```python
            clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))
            clr = CyclicLR(base_lr=0.001, max_lr=0.006,
                                step_size=2000., scale_fn=clr_fn,
                                scale_mode='cycle')
            model.fit(X_train, Y_train, callbacks=[clr])
        ```
    # Arguments
        base_lr: initial learning rate which is the
            lower boundary in the cycle.
        max_lr: upper boundary in the cycle. Functionally,
            it defines the cycle amplitude (max_lr - base_lr).
            The lr at any cycle is the sum of base_lr
            and some scaling of the amplitude; therefore
            max_lr may not actually be reached depending on
            scaling function.
        step_size: number of training iterations per
            half cycle. Authors suggest setting step_size
            2-8 x training iterations in epoch.
        mode: one of {triangular, triangular2, exp_range}.
            Default 'triangular'.
            Values correspond to policies detailed above.
            If scale_fn is not None, this argument is ignored.
        gamma: constant in 'exp_range' scaling function:
            gamma**(cycle iterations)
        scale_fn: Custom scaling policy defined by a single
            argument lambda function, where
            0 <= scale_fn(x) <= 1 for all x >= 0.
            mode paramater is ignored
        scale_mode: {'cycle', 'iterations'}.
            Defines whether scale_fn is evaluated on
            cycle number or cycle iterations (training
            iterations since start of cycle). Default is 'cycle'.
    """

    def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',
                 gamma=1., scale_fn=None, scale_mode='cycle'):
        super(CyclicLR, self).__init__()

        self.base_lr = base_lr
        self.max_lr = max_lr
        self.step_size = step_size
        self.mode = mode
        self.gamma = gamma
        if scale_fn == None:
            if self.mode == 'triangular':
                self.scale_fn = lambda x: 1.
                self.scale_mode = 'cycle'
            elif self.mode == 'triangular2':
                self.scale_fn = lambda x: 1 / (2. ** (x - 1))
                self.scale_mode = 'cycle'
            elif self.mode == 'exp_range':
                self.scale_fn = lambda x: gamma ** (x)
                self.scale_mode = 'iterations'
        else:
            self.scale_fn = scale_fn
            self.scale_mode = scale_mode
        self.clr_iterations = 0.
        self.trn_iterations = 0.
        self.history = {}

        self._reset()

    def _reset(self, new_base_lr=None, new_max_lr=None,
               new_step_size=None):
        """Resets cycle iterations.
        Optional boundary/step size adjustment.
        """
        if new_base_lr != None:
            self.base_lr = new_base_lr
        if new_max_lr != None:
            self.max_lr = new_max_lr
        if new_step_size != None:
            self.step_size = new_step_size
        self.clr_iterations = 0.

    def clr(self):
        cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size))
        x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1)
        if self.scale_mode == 'cycle':
            return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(cycle)
        else:
            return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(
                self.clr_iterations)

    def on_train_begin(self, logs={}):
        logs = logs or {}

        if self.clr_iterations == 0:
            K.set_value(self.model.optimizer.lr, self.base_lr)
        else:
            K.set_value(self.model.optimizer.lr, self.clr())

    def on_batch_end(self, epoch, logs=None):

        logs = logs or {}
        self.trn_iterations += 1
        self.clr_iterations += 1

        self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
        self.history.setdefault('iterations', []).append(self.trn_iterations)

        for k, v in logs.items():
            self.history.setdefault(k, []).append(v)

        K.set_value(self.model.optimizer.lr, self.clr())

if __name__ == '__main__':

    '''
    一个epoch是至将整个训练集训练一轮。如果我们令batch_size等于100(每次使用100个样本进行训练), 
    那么一个epoch总共需要计算500次iteration。
    iteration : 一代中进行了多少次迭代 np.ceil(train_data / batch_size)
    '''
    inp = Input(shape=(15,))
    x = Dense(10, activation='relu')(inp)
    x = Dense(1, activation='sigmoid')(x)
    model = Model(inp, x)

    X = np.random.rand(2000000, 15)
    Y = np.random.randint(0, 2, size=2000000)

    clr_triangular = CyclicLR(mode='triangular')
    model.compile(optimizer=SGD(0.1), loss='binary_crossentropy', metrics=['accuracy'])
    model.fit(X, Y, batch_size=2000, nb_epoch=10, callbacks=[clr_triangular], verbose=0)
    plt.figure()
    plt.plot(clr_triangular.history['iterations'], clr_triangular.history['lr'])
    plt.xlabel('Training Iterations')
    plt.ylabel('Learning Rate')
    plt.title("CLR - 'triangular' Policy")
    plt.show()

    # clr_triangular = CyclicLR(mode='triangular2')
    # model.compile(optimizer=SGD(), loss='binary_crossentropy', metrics=['accuracy'])
    # model.fit(X, Y, batch_size=2000, nb_epoch=20, callbacks=[clr_triangular], verbose=0)
    # clr_triangular._reset()
    # model.fit(X, Y, batch_size=2000, nb_epoch=10, callbacks=[clr_triangular], verbose=0)
    # plt.xlabel('Training Iterations')
    # plt.ylabel('Learning Rate')
    # plt.title("'triangular2' Policy Reset at 20000 Iterations")
    # plt.plot(clr_triangular.history['iterations'], clr_triangular.history['lr'])

(来自于博客:https://blog.csdn.net/qq_38410428/article/details/88061738,里面还有其他的可以用的,写的非常好)

这个类的参数包括:

base_lr:初始学习率,这是周期中的下限。这会覆盖优化器lr。默认值为0.001。
max_lr:循环中的上边界。在功能上,它定义了循环幅度(max_lr- base_lr)。任何周期的lr是base_lr幅度的总和和一些比例; 因此,max_lr根据缩放功能,实际上可能无法达到。默认0.006。
step_size:每半个周期的训练迭代次数。作者建议设定step_size = (2-8) x (training iterations in epoch)。默认2000。
mode:其中一个{‘triangular’, ‘triangular2’, ‘exp_range’}。值对应于下面详述的策略。如果scale_fn不是None,则忽略该参数。默认’triangular’。
gamma:‘exp_range’缩放功能常数,gamma^(cycle iterations)。默认1。
scale_fn:自定义扩展策略由单个参数lambda函数定义,0 <= scale_fn(x) <= 1适用于所有x >= 0。mode使用此参数时,将忽略该参数。默认None。
scale_mode:{‘cycle’, ‘iterations’}。定义是否scale_fn根据循环次数或循环迭代进行评估(自循环开始后的训练迭代)。默认是’cycle’。

Cosine decay with warmup和 周期性学习率(CLR)(学习率更新方式)_第2张图片

你可能感兴趣的:(深度学习理解篇)