相似图片检测:感知哈希算法之dHash的Python实现

某些情况下,我们需要检测图片之间的相似性,进行我们需要的处理:删除同一张图片、标记盗版等。
如何判断是同一张图片呢?最简单的方法是使用加密哈希(例如MD5, SHA-1)判断。但是局限性非常大。例如一个txt文档,其MD5值是根据这个txt的二进制数据计算的,如果是这个txt文档的完全复制版,那他们的MD5值是完全相同的。但是,一旦改变副本的内容,哪怕只是副本的缩进格式,其MD5也会天差地别。因此加密哈希只能用于判断两个完全一致、未经修改的文件,如果是一张经过调色或者缩放的图片,根本无法判断其与另一张图片是否为同一张图片。
那么如何判断一张被PS过的图片是否与另一张图片本质上相同呢?比较简单、易用的解决方案是采用感知哈希算法(Perceptual Hash Algorithm)。

感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。

  • aHash:平均值哈希。速度比较快,但是常常不太精确。
  • pHash:感知哈希。精确度比较高,但是速度方面较差一些。
  • dHash:差异值哈希。Amazing!精确度较高,且速度也非常快。因此我就选择了dHash作为我图片判重的算法。

一、 相似图片检测步骤:

  1. 分别计算两张图片的dHash值
  2. 通过dHash值计算两张图片的汉明距离(Hamming Distance),通过汉明距离的大小,判断两张图片的相似程度。

二、dHash计算


需要计算dHash值的图片
Step1. 缩放图片

如果我们要计算上图的dHash值,第一步是把它缩放到足够小。为什么需要缩放呢?因为原图的分辨率一般都非常高。一张 200*200 的图片,就有整整4万个像素点,每一个像素点都保存着一个RGB值,4万个RGB,是相当庞大的信息量,非常多的细节需要处理。因此,我们需要把图片缩放到非常小,隐藏它的细节部分,只见森林,不见树木。建议缩放为9*8,虽然可以缩放为任意大小,但是这个值是相对合理的。而且宽度为9,有利于我们转换为hash值,往下面看,你就明白了。

resize_width = 9
resize_height = 8
# 1. resize to (9,8)
smaller_image = image.resize((resize_width, resize_height))

缩放为9*8分辨率后
Step2. 灰度化

dHash全名为差异值hash,通过计算相邻像素之间的颜色强度差异得出。我们缩放后的图片,细节已经被隐藏,信息量已经变少。但是还不够,因为它是彩色的,由RGB值组成。白色表示为(255,255,255),黑色表示为(0,0,0),值越大颜色越亮,越小则越暗。每种颜色都由3个数值组成,也就是红、绿、蓝的值 。如果直接使用RGB值对比颜色强度差异,相当复杂,因此我们转化为灰度值——只由一个0到255的整数表示灰度。这样的话就将三维的比较简化为了一维比较。

# 2. 灰度化 Grayscale
grayscale_image = smaller_image.convert("L")

灰度化后
Step3. 差异计算

差异值是通过计算每行相邻像素的强度对比得出的。我们的图片为9*8的分辨率,那么就有8行,每行9个像素。差异值是每行分别计算的,也就是第二行的第一个像素不会与第一行的任何像素比较。每一行有9个像素,那么就会产生8个差异值,这也是为何我们选择9作为宽度,因为8bit刚好可以组成一个byte,方便转换为16进制值。
如果前一个像素的颜色强度大于第二个像素,那么差异值就设置为True(也就是1),如果不大于第二个像素,就设置为False(也就是0)。

# 3. 比较相邻像素
pixels = list(grayscale_image.getdata())
difference = []
for row in range(resize_height):    
    row_start_index = row * resize_width    
    for col in range(resize_width - 1):        
        left_pixel_index = row_start_index + col
        difference.append(pixels[left_pixel_index] > pixels[left_pixel_index + 1])
Step4. 转换为hash值

我们将差异值数组中每一个值看做一个bit,每8个bit组成为一个16进制值,将16进制值连接起来转换为字符串,就得出了最后的dHash值。

# 转化为16进制(每个差值为一个bit,每8bit转为一个16进制)
decimal_value = 0
hash_string = ""
for index, value in enumerate(difference):    
    if value:  # value为0, 不用计算, 程序优化        
        decimal_value += value * (2 ** (index % 8))   
    if index % 8 == 7:  # 每8位的结束        
        hash_string += str(hex(decimal_value)[2:].rjust(2, "0"))  # 不足2位以0填充。0xf=>0x0f        
        decimal_value = 0

三、 计算汉明距离(Hamming Distance)

汉明距离这个概念不止运用于图片对比领域,也被使用于众多领域,具体的介绍可以参见Wikipedia。
汉明距离表示将A修改成为B,需要多少个步骤。比如字符串“abc”与“ab3”,汉明距离为1,因为只需要修改“c”为“3”即可。
dHash中的汉明距离是通过计算差异值的修改位数。我们的差异值是用0、1表示的,可以看做二进制。二进制0110与1111的汉明距离为2。
我们将两张图片的dHash值转换为二进制difference,并取异或。计算异或结果的“1”的位数,也就是不相同的位数,这就是汉明距离。

difference = (int(dhash1, 16)) ^ (int(dhash2, 16))
return bin(difference).count("1")

如果传入的参数不是两张图的dHash值,而是直接比较两张图片,那么不需要生成dHash值,直接用Step3中的difference数组,统计不相同的位数,就是汉明距离。

hamming_distance = 0
for index, img1_pix in enumerate(image1_difference):   
    img2_pix = image2_difference[index]    
    if img1_pix != img2_pix:        
        hamming_distance += 1

一般来说,汉明距离小于5,基本就是同一张图片。大家可以根据自己的实际情况,判断汉明距离临界值为多少。

Github:

https://github.com/hjaurum/DHash

参考文档:
  • http://www.hackerfactor.com/blog/?/archives/529-Kind-of-Like-That.html
  • http://blog.iconfinder.com/detecting-duplicate-images-using-python/
    推荐拓展阅读


    文/Erum(简书作者)
    原文链接:http://www.jianshu.com/p/193f0089b7a2
    著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。

    你可能感兴趣的:(图像处理)