- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- GAN(Generative Adversarial Network)—生成对抗网络
算法资料吧!
深度学习机器学习人工智能
GAN(GenerativeAdversarialNetwork)代表了深度学习中生成建模的尖端方法,通常利用卷积神经网络等架构。生成建模的目标是自主识别输入数据中的模式,使模型能够生成与原始数据集相似的新示例。本文涵盖了您需要了解的有关GAN、GAN架构、GAN的工作原理以及GAN模型类型等的所有信息。目录什么是生成对抗网络?GAN的类型GAN的架构GAN是如何工作的?生成对抗网络(GAN)的应
- 在PyTorch中使用插值法来优化卷积神经网络(CNN)所需硬件资源
mosquito_lover1
pytorchcnn人工智能
插值法其实就是在已知数据点之间估计未知点的值。通过已知的离散数据点,构造一个连续的曲线函数,预测数据点之间的空缺值是什么并且自动填补上去。适用场景:在卷积神经网络(CNN)中的应用场景中,经常遇到计算资源有限,比如显存不够或者处理速度慢,需要用插值来降低计算量。使用插值法的优点:物理系统的数据通常是连续的,使用插值法可以保持数据的连续性直接截取可能会丢失重要的动态特征,使用插值法不会丢失重要信息可
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- 卷积神经网络八股(一)------20行代码搞定鸢尾花分类
有幸添砖java
opencv
编写不易,未有VIP但想白嫖文章的朋友可以关注我的个人公众号“不秃头的码农”直接查看文章,后台回复java资料、单片机、安卓可免费领取资源。你的支持是我最大的动力!卷积神经网络八股(一)------20行代码搞定鸢尾花分类引言用TensorflowAPI:tf.keras实现神经网络搭建八股Sequential的用法compile的用法fit的用法(batch是每次喂入神经网络的样本数、epoch
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- 为AI聊天工具添加一个知识系统 之122 详细设计之63 实体范畴论和神经元元模型:命名法函子
一水鉴天
智能制造软件智能人工语言人工智能
本文要点要点本文讨论:实体的范畴论(三套论法):一元论、二元论和三元论。神经元元模型(三层含义)暨三种神经网络构造型既神经元三个功能约束即神经细胞元元模型。”注:第一行是实体的范畴论的三种论法。主角是实体,配角是可以以三种论调来“论”的“范畴”从三种论调或主张中我们能知道“元”是专属字,通过理解可以是“变元”agument,--调动实参第二行是“神经元元模型”的三层含义(或元元模型统摄的三个三种方
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)
段智华
深入理解ChatGPTChatGPT国内OpenAIGPT-3GPT-4
GPT-2源码实现及GPT-3、GPT-3.5、GPT-4及GPT-5内幕解析(二)Gavin大咖微信:NLP_Matrix_Space5.2GPT-2源码实现逐行解析本节讲解GPT-2源码,gpt2.py是一个使用NumPy实现的代码,在代码中实现了GELU激活函数、softmax函数、层归一化、线性层、前馈神经网络、多头自注意力机制、Transformer块、GPT2模型以及文本生成函数,通过
- PyTorch实现DARTS:可微分架构搜索指南
余伊日Estra
PyTorch实现DARTS:可微分架构搜索指南pt.darts项目地址:https://gitcode.com/gh_mirrors/pt/pt.darts项目介绍PyTorchImplementationofDARTS(简称pt.darts)是一个基于PyTorch框架的DARTS算法实现库。DARTS(DifferentiableArchitectureSearch)是一种创新的神经网络架构
- 神经网络与深度学习入门:理解ANN、CNN和RNN
shandianfk_com
ChatGPTAI神经网络深度学习cnn
在现代科技日新月异的今天,人工智能已经成为了我们生活中的重要组成部分。无论是智能手机的语音助手,还是推荐系统,背后都有一项核心技术在支撑,那就是神经网络与深度学习。今天,我们就来聊一聊这个听起来高大上的话题,其实它也没那么难懂!什么是神经网络?首先,我们要了解什么是神经网络。神经网络(ArtificialNeuralNetwork,简称ANN)是模拟人脑神经元连接方式的一种算法。它由一层层的“神经
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- 深度学习入门篇--来瞻仰卷积神经网络的鼻祖LeNet
智算学术
深度学习图像分类篇深度学习
B站视频讲解:深度学习入门篇:使用pytorch搭建LeNet网络并代码详解实战前言大家在学习神经网络的时候肯定会有这样的感受,有很多的文章和视频,有的文章也很好,但是总是不成体系,总是学起来东一榔锤,西一棒槌的,在这种情况下,我会给大家更新深度学习系列的技术文章,轮椅级持续更新技术干货,别问为什么是轮椅级,因为保姆级已经过时了!前置基础知识储备:python/pytorch/神经网络基础知识概念
- 轻量级网络设计原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
轻量级网络设计原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,神经网络模型变得越来越庞大和复杂。然而,大规模模型在计算资源、存储空间以及推理速度方面提出了更高的要求,这在移动设备、嵌入式系统等资源受限的环境中尤为明显。为了解决这一问题,轻量级网络设计应运而生。1.2研
- YOLOv12:以注意力为中心的物体检测
那雨倾城
PiscTraceYOLO机器学习目标检测深度学习图像处理
YOLOv12是YOLO系列中的最新版本,它引入了一种以注意力为中心的架构,旨在进一步提升物体检测的精度和速度。相比以往的YOLO模型,YOLOv12摒弃了传统基于卷积神经网络(CNN)的结构,采用了全新的方法,融合了自注意力机制和高效的网络架构优化,提供了一个高精度、低延迟的实时目标检测模型。1.主要功能YOLOv12在多个关键点进行了优化和创新,以下是它的主要功能:1.1区域注意机制(Regi
- 大模型学习完整路径(一站式汇总),从零基础到精通!新手友好级指南
Python程序员罗宾
学习语言模型知识图谱人工智能数据库java
如果读者朋友不想深入学习大模型,则了解提示词的使用原则也可以了。要是既不想深入学习,又要做大模型相关的项目,则对于工程同学来说,学习RAG也能把大模型玩转起来。前排提示,文末有大模型AGI-CSDN独家资料包哦!先来一张整体结构图,越是下面部分,越是基础:可以按以下步骤学习:1.理解基础概念需要了解深度学习的基本原理和常见术语,如神经网络、梯度下降、反向传播、监督学习、无监督学习、分类、回归、聚类
- 为什么词向量和权重矩阵dot运算就能得到想要的效果呢?
cjl30804
矩阵线性代数nlp
最近在学习NLP算法的时候,进入到了深水区以后,发现了弄懂这个才是核心中的核心,抓住了主要矛盾了。特意拿出来跟大家分享。词向量(WordEmbeddings)和权重矩阵的点积运算之所以能够帮助我们实现特定的效果,主要是因为它们在神经网络架构中扮演的角色以及背后的数学原理。具体来说,在自然语言处理任务中,这种操作通常出现在如Transformer模型中的自注意力机制里。让我们深入探讨一下为什么这种方
- 浅显介绍图像识别的算法卷积神经网络(CNN)中的激活函数
cjl30804
算法cnn人工智能
激活函数的作用激活函数在神经网络中扮演着至关重要的角色,其主要作用包括但不限于以下几点:引入非线性:如果没有激活函数或仅使用线性激活函数,无论神经网络有多少层或多复杂,整个模型仍然只能表达线性映射。这意味着它无法学习和表示数据中的复杂模式。通过使用非线性的激活函数,如ReLU(修正线性单元)、Sigmoid、Tanh等,可以赋予神经网络学习复杂函数的能力。决定神经元是否被激活:激活函数根据输入信号
- Engineering A Large Language Model From Scratch
UnknownBody
语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EngineeringALargeLanguageModelFromScratch》的翻译。从头开始设计一个大语言模型摘要1引言2Atinuke算法3结果4相关工作5讨论6结论摘要自然语言处理(NLP)中深度学习的激增导致了创新技术的发展和发布,这些技术能够熟练地理解和生成人类语言。Atinuke是一种基于Transformer的神经网络,通过使用独特的配置来优化各种语
- 深度学习(5)-卷积神经网络
yyc_audio
深度学习cnn人工智能
我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为97.8%。虽然这个卷积神经网络很简单,但其精度会超过第2章的密集连接模型。代码8-1给出了一个简单的卷积神经网络。它是conv2D层和MaxPooling2D层的堆叠,你很快就会知道这些层的作用。我们
- 深度学习(2)-深度学习关键网络架构
yyc_audio
人工智能机器学习深度学习
关键网络架构深度学习有4种类型的网络架构:密集连接网络、卷积神经网络、循环神经网络和Transformer。每种类型的模型都是针对特定的输入模式,网络架构包含了关于数据结构的假设,即模型搜索的假设空间。某种架构能否解决某个问题,完全取决于问题的数据结构与所选的网络架构假设之间是否匹配。这些不同类型的网络可以很容易组合起来,实现更大的多模式模型,就像拼乐高积木一样。某种程度上来说,深度学习的层就是信
- Transformer大模型实战 教师 学生架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战教师学生架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。其中,Transformer模型作为一种基于自注意力机制的深度神经网络结构,因其优越的性能和灵活的适用性,在NLP任务中得到了广泛应用。然而,Trans
- LLM的MoE架构的“动态路由”为什么能训练出来?
互联网之路.
知识点架构
互联网各领域资料分享专区(不定期更新):Sheet正文大型语言模型(MoE)架构中的“动态路由”之所以能够被有效训练,关键在于其设计融合了可微分的路由机制、专家协同优化以及负载均衡约束。以下是具体原因和技术原理的解析:一、动态路由的可微分性与端到端优化门控网络的可训练性动态路由的核心是门控网络(GatingNetwork),它是一个可训练的神经网络,通过输入数据生成专家权重分布。例如,输入经过门控
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默