参考:OPTIMIZING MODEL PARAMETERS
梯度反向传播算法,更新参数
SGD -> Adam
dataset -> dataloader,train_dataloader训练,test_dataloader测试,迭代器
模型继承Module类,__init__(self)
,定义层,Flatten()展平,和Sequential(),有序的容器
forward()函数,前向的计算,logits输出类别数,10个类别
Hyperparameters,超参数,不参与优化,影响模型的效果
Loss Function,损失函数、目标函数,分类函数CrossEntropyLoss,回归函数MSELoss
Optimizer,优化器,SGD,对参数进行更新,torch.optim.SGD(),更新模型参数,model.parameters()
优化前,调用optimizer.zero_grad(),计算梯度loss.backward(),optimizer.step()更新所有参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.no_grad()进行推理,计算正确率correct
数据集部分,编写dataset的自定义类,Transformer函数,Collection函数,dataset -> dataloader
model可以替换timm类,调用require_grad(False),冻结参数
简单的分类或回归任务,seq2seq,训练传入真实值,测试是自回归任务
AI任务,数据集 + 模型 + 训练,预测时,是不需要优化参数的
PyTorch的torch.autograd(),自动微分
不使用zero_grad(),学习率需要降低,实际项目需要自定义数据集
序列建模,需要padding操作,有一些非法的值,Python类和类的继承,学习率 + 优化器
Embedding类,浮点类型,输入one-hot向量,权重就是embedding vector
源码:
import timm
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
# self.linear_relu_stack = nn.Sequential(
# nn.Linear(28*28, 512),
# nn.ReLU(),
# nn.Linear(512, 512),
# nn.ReLU(),
# nn.Linear(512, 10),
# )
self.mobilenetv3 = timm.create_model('mobilenetv3_large_100', num_classes=10, pretrained=True)
def forward(self, x):
x = torch.cat([x, x, x], dim=1) # 灰度图转换为彩色图
logits = self.mobilenetv3(x)
return logits
model = NeuralNetwork()
learning_rate = 1e-3
batch_size = 64
epochs = 5
# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")