1)、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利
2)、三者都有惰性机制,执行trainform操作时不会立即执行,遇到Action才会执行
3)、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
4)、三者都有partition的概念,如
var predata=data.repartition(24).mapPartitions{
PartLine => {
PartLine.map{
line =>
println(“转换操作”)
}
}
}
这样对每一个分区进行操作时,就跟在操作数组一样,不但数据量比较小,而且可以方便的将map中的运算结果拿出来,如果直接用map,map中对外面的操作是无效的,如
val rdd=spark.sparkContext.parallelize(Seq(("a", 1), ("b", 1), ("a", 1)))
var flag=0
val test=rdd.map{line=>
println("运行")
flag+=1
println(flag)
line._1
}
println(test.count)
println(flag)
/**
运行
1
运行
2
运行
3
3
0
* */
不使用partition时,对map之外的操作无法对map之外的变量造成影响
5)、三者有许多共同的函数,如filter,排序等
6)、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持
import SparkSession.implicits._
7)、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型,为了提高稳健性,最好后面有一个_通配操作,这里提供了DataFrame一个解析字段的方法
DataFrame:
testDF.map{
case Row(col1:String,col2:Int)=>
println(col1);println(col2)
col1
case _=>
""
}
Dataset:
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
testDS.map{
case Coltest(col1:String,col2:Int)=>
println(col1);println(col2)
col1
case _=>
""
}
1、RDD一般和spark mlib同时使用
2、RDD不支持sparksql操作
1、DataFrame与Dataset一般与spark ml同时使用
2、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如
dataDF.createOrReplaceTempView("tmp")
spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)
3、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
//保存
val saveoptions = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://172.xx.xx.xx:9000/test")
datawDF.write.format("com.databricks.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()
//读取
val options = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://172.xx.xx.xx:9000/test")
val datarDF= spark.read.options(options).format("com.databricks.spark.csv").load()
利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定
这里主要对比Dataset和DataFrame,因为Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同
1)DataFrame也可以叫Dataset[Row],dataframe每一行的类型是Row(不解析的话无法得知每一行的字段名和对应的字段类型)
拿出dataframe行中特定字段的方法有两个:
getAS方法
testDF.foreach{
line =>
val col1=line.getAs[String]("col1")
val col2=line.getAs[String]("col2")
}
模式匹配
testDF.map{
case Row(col1:String,col2:Int)=>
println(col1);println(col2)
col1
case _=>
""
}
2) Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息(可以定义字段名和类型)
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
/**
rdd
("a", 1)
("b", 1)
("a", 1)
* */
val test: Dataset[Coltest]=rdd.map{line=>
Coltest(line._1,line._2)
}.toDS
test.map{
line=>
println(line.col1)
println(line.col2)
}
可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题
RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换
DataFrame/Dataset转RDD:
val rdd1=testDF.rdd
val rdd2=testDS.rdd
RDD转DataFrame:
import spark.implicits._
val testDF = rdd.map {line=>
(line._1,line._2)
}.toDF("col1","col2")
一般用元组把一行的数据写在一起,然后在toDF中指定字段名
RDD转Dataset:
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = rdd.map {line=>
Coltest(line._1,line._2)
}.toDS
可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可
Dataset转DataFrame:
这个也很简单,因为只是把case class封装成Row
import spark.implicits._
val testDF = testDS.toDF
DataFrame转Dataset:
import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest]
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用
转载: http://www.cnblogs.com/starwater/p/6841807.html