序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

序列化的目的

1、以某种存储形式使自定义 对象持久化;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性
json
json
import json
dic={"aaa":"bb","cc":"ddd"}
str_dic=json.dumps(dic)
print(str_dic)
print(type(str_dic))
结果:
{"aaa": "bb", "cc": "ddd"}
<class 'str'>

ret=json.loads(str_dic)
print(ret)
print(type(ret))
结果:
{'aaa': 'bb', 'cc': 'ddd'}
<class 'dict'>

写入文件:
import json
dic={"aaa":"bb","cc":"ddd"}
str_dic=json.dumps(dic)
with open("json_dump",mode="w")as f:
    f.write("str_dic")

import json
dic={"aaa":"bb","cc":"ddd"}
with open("json_dump",mode="w")as f:
    json.dump(dic,f)

文件读取
import json
dic={"aaa":"bb","cc":"ddd"}
with open("json_dump")as f:
    print(json.load(f))

 

json格式的限制
json格式的key必须是字符串数据类型
如果是数字为key,那么dump之后会强行转成字符串数据类型
import json
dic={123:456,321:654}
str_dic=json.dumps(dic)
print(str_dic)
dic_str=json.loads(str_dic)
print(dic_str)
结果:
{"123": 456, "321": 654}
{'123': 456, '321': 654}

json支持元组做value,对元组做value的字典会把元组强制转换成列表
import json
dic={123:456,321:(654,789,987)}
str_dic=json.dumps(dic)
print(str_dic)
dic_str=json.loads(str_dic)
print(dic_str)
结果:
{"123": 456, "321": [654, 789, 987]}
{'123': 456, '321': [654, 789, 987]}

json不支持元组做key
import json
dic={123:456,(654,789,987):321}
str_dic=json.dumps(dic)
print(str_dic)
dic_str=json.loads(str_dic)
print(dic_str)
结果:报错

对列表的dump
import json
lst = ['aaa',123,'bbb',12.456]
with open('json_demo','w') as f:
    json.dump(lst,f)
with open('json_demo') as f:
    ret = json.load(f)
    print(ret)
结果:
['aaa', 123, 'bbb', 12.456]
注:json_demo文件夹下的内容:
["aaa", 123, "bbb", 12.456]

json格式中的字符串只能是""
import json
with open('json_demo') as f:
    ret = json.load(f)
    print(ret)
结果:报错
注:json_demo文件夹下的内容:
['aaa', 123, "bbb", 12.456]

可以多次dump但是不能load出来了
import json
lst = ['aaa',123,'bbb',12.456]
dic={123:456}
with open('json_demo','w') as f:
    json.dump(lst,f)
    json.dump(dic,f)
结果:json_demo文件夹下的内容:
["aaa", 123, "bbb", 12.456]{"123": 456}

import json
with open('json_demo','r') as f:
    ret=json.load(f)
    print(ret)
结果:报错

想dump多个数据进入文件并能load读出来,用dumps
import json
lst = ['aaa',123,'bbb',12.456]
dic={123:456}
with open('json_demo','w') as f:
    str_lst=json.dumps(lst)
    str_dic=json.dumps(dic)
    f.write(str_lst+"\n")
    f.write(str_dic+"\n")
结果:json_demo文件夹下的内容:
["aaa", 123, "bbb", 12.456]
{"123": 456}

import json
with open('json_demo','r') as f:
    for line in f:
        ret=json.loads(line)
        print(ret)
结果:
['aaa', 123, 'bbb', 12.456]
{'123': 456}
注:json_demo文件夹下的内容:
["aaa", 123, "bbb", 12.456]
{"123": 456}

中文格式的 ensure_ascii = False
import json
dic={"aaa":"bbb","name":"小明"}
str_dic=json.dumps(dic)
print(str_dic)
dic_str=json.loads(str_dic)
print(dic_str)
结果:
{"aaa": "bbb", "name": "\u5c0f\u660e"}
{'aaa': 'bbb', 'name': '小明'}

import json
dic={"aaa":"bbb","name":"小明"}
str_dic=json.dumps(dic,ensure_ascii=False)
print(str_dic)
dic_str=json.loads(str_dic)
print(dic_str)
结果:
{"aaa": "bbb", "name": "小明"}
{'aaa': 'bbb', 'name': '小明'}

import json
dic={"aaa":"bbb","name":"小明"}
with open('json_demo','w',encoding='utf-8') as f:
    json.dump(dic,f,ensure_ascii=False)
结果:json_demo文件夹下的内容:
{"aaa": "bbb", "name": "小明"}

json的其他参数,是为了用户看的更方便,但是会相对浪费存储空间
import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=4,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

结果:
{
    "age":16,
    "sex":"male",
    "username":[
        "李华",
        "二愣子"
    ]
}

set不能被dump/dumps
pickle
支持几乎所有对象的序列化
dump的结果是bytes

import pickle
dic={111:(1,2,3),("name","age"):22}
str_dic=pickle.dumps(dic)
print(str_dic)
dic_str=pickle.loads(str_dic)
print(dic_str)
结果:
b'\x80\x03}q\x00(KoK\x01K\x02K\x03\x87q\x01X\x04\x00\x00\x00nameq\x02X\x03\x00\x00\x00ageq\x03\x86q\x04K\x16u.'
{111: (1, 2, 3), ('name', 'age'): 22}

dump用的f文件句柄需要以wb的形式打开,load所用的f是'rb'模式
import pickle
class Student:
    def __init__(self,name,age):
        self.name = name
        self.age = age
xm = Student('XM',11)
print(pickle.dumps(xm))
结果:
b'\x80\x03c__main__\nStudent\nq\x00)\x81q\x01}q\x02(X\x04\x00\x00\x00nameq\x03X\x02\x00\x00\x00XMq\x04X\x03\x00\x00\x00ageq\x05K\x0bub.'

ret = pickle.dumps(xm)
xh = pickle.loads(ret)
print(xh.name)
print(xh.age)
结果:
XM
11

import pickle
class Student:
    def __init__(self,name,age):
        self.name = name
        self.age = age
xm = Student('XM',11)
with open('pickle_demo','wb') as f:
    pickle.dump(xm,f)

对于对象的序列化需要这个对象对应的类在内存中
反序列化回来必须含有写入时的类
import pickle
class Student:
    def __init__(self,name,age):
        self.name = name
        self.age = age
with open('pickle_demo','rb') as f:
    xh=pickle.load(f)
    print(xh.name)
结果:XM

对于多次dump/load的操作做了良好的处理
import pickle
with open('pickle_demo','wb') as f:
    pickle.dump({'k1':'v1'}, f)
    pickle.dump({'k11':'v1'}, f)
    pickle.dump({'k11':'v1'}, f)
    pickle.dump({'k12':[1,2,3]}, f)
    pickle.dump(['k1','v1','l1'], f)
with open('pickle_demo','rb') as f:
    print(pickle.load(f))
    print(pickle.load(f))
    print(pickle.load(f))
    print(pickle.load(f))
    print(pickle.load(f))
当多一个print(pickle.load(f))时就会报错.所以:
import pickle
with open('pickle_demo','wb') as f:
    pickle.dump({'k1':'v1'}, f)
    pickle.dump({'k11':'v1'}, f)
    pickle.dump({'k11':'v1'}, f)
    pickle.dump({'k12':[1,2,3]}, f)
    pickle.dump(['k1','v1','l1'], f)
with open('pickle_demo','rb') as f:
    while True:
        try:
            print(pickle.load(f))
        except EOFError:
            break
shelve
shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。
import shelve
f = shelve.open('shelve_demo')
f['key'] = {'k1':(1,2,3),'k2':'v2'}
f.close()

import shelve
f = shelve.open('shelve_demo')
content = f['key']
f.close()
print(content)
 
    

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close()

f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

设置writeback

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/chenyibai/articles/9444016.html

你可能感兴趣的:(json,python)