除了批大小对模型收敛速度的影响外,学习率和梯度估计也是影响神经网络优化的重要因素。
神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:
学习率调整:通过自适应地调整学习率使得优化更稳定。AdaGrad、RMSprop、AdaDelta算法等。
梯度估计修正:通过修正每次迭代时估计的梯度方向来加快收敛速度。动量法、Nesterov加速梯度方法等。
本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法。
为了更好地展示不同优化算法的能力对比,我们选择一个二维空间中的凸函数,然后用不同的优化算法来寻找最优解,并可视化梯度下降过程的轨迹。
将被优化函数实现为OptimizedFunction算子,其forward方法是Sphere函数的前向计算,backward方法则计算被优化函数对x的偏导。代码实现如下:
class OptimizedFunction(Op):
def __init__(self, w):
super(OptimizedFunction, self).__init__()
self.w = torch.as_tensor(w,dtype=torch.float32)
self.params = {'x': torch.as_tensor(0,dtype=torch.float32)}
self.grads = {'x': torch.as_tensor(0,dtype=torch.float32)}
def forward(self, x):
self.params['x'] = x
return torch.matmul(self.w.T, torch.square(self.params['x']))
def backward(self):
self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])
训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失。代码实现如下:
def train_f(model, optimizer, x_init, epoch):
x = x_init
all_x = []
losses = []
for i in range(epoch):
all_x.append(copy.copy(x.numpy()))
loss = model(x)
losses.append(loss)
model.backward()
optimizer.step()
x = model.params['x']
return torch.as_tensor(all_x), losses
可视化函数 定义一个Visualization类,用于绘制x的更新轨迹。代码实现如下:
import numpy as np
import matplotlib.pyplot as plt
class Visualization(object):
def __init__(self):
x1 = np.arange(-5, 5, 0.1)
x2 = np.arange(-5, 5, 0.1)
x1, x2 = np.meshgrid(x1, x2)
self.init_x = torch.as_tensor([x1, x2])
def plot_2d(self, model, x, fig_name):
fig, ax = plt.subplots(figsize=(10, 6))
cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])
c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(1,0)), colors='black')
cbar = fig.colorbar(cp)
ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')
ax.plot(0, 'r*', markersize=18, color='#fefefe')
ax.set_xlabel('$x1$')
ax.set_ylabel('$x2$')
ax.set_xlim((-2, 5))
ax.set_ylim((-2, 5))
plt.savefig(fig_name)
定义train_and_plot_f函数,调用train_f和Visualization,训练模型并可视化参数更新轨迹。代码实现如下:
def train_and_plot_f(model, optimizer, epoch, fig_name):
x_init = torch.as_tensor([3, 4], dtype=torch.float32)
print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))
x, losses = train_f(model, optimizer, x_init, epoch)
losses = np.array(losses)
# 展示x1、x2的更新轨迹
vis = Visualization()
vis.plot_2d(model, x, fig_name)
模型训练与可视化 指定Sphere函数中w的值,实例化被优化函数,通过小批量梯度下降法更新参数,并可视化x的更新轨迹。
from op import SimpleBatchGD
# 固定随机种子
torch.seed()
w = torch.as_tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')
这里我们随机生成一组数据作为数据样本,再构建一个简单的单层前馈神经网络,用于前向计算。
数据集;
# 固定随机种子
torch.manual_seed(0)
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.tensor([0.5, 0.8])
w = torch.unsqueeze(w, dim=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, dim=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())
# X,y组成训练样本数据
data = torch.concat((X, y), dim=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())
X: [-1.1258398 -1.1523602]
y: [-1.4770346]
input data shape: torch.Size([1000, 3])
data: [-1.1258398 -1.1523602 -1.4770346]
线性层:
class Linear(Op):
def __init__(self, input_size, weight_init=torch.randn, bias_init=torch.zeros):
super(Linear, self).__init__()
self.params = {}
self.params['W'] = weight_init(size=[input_size, 1])
self.params['b'] = bias_init(size=[1])
self.inputs = None
self.grads = {}
def forward(self, inputs):
self.inputs = inputs
self.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
return self.outputs
def backward(self, labels):
K = self.inputs.shape[0]
self.grads['W'] = 1. /K * torch.matmul(self.inputs.T, (self.outputs - labels))
self.grads['b'] = 1. /K * torch.sum(self.outputs - labels, dim=0)
这里backward函数中实现的梯度并不是forward函数对应的梯度,而是最终损失关于参数的梯度.由于这里的梯度是手动计算的,所以直接给出了最终的梯度。
训练函数 在准备好样本数据和网络以后,复用优化器SimpleBatchGD类,使用小批量梯度下降来进行简单的拟合实验。
这里我们重新定义模型训练train函数。主要以下两点原因:
在一般的随机梯度下降中要在每回合迭代开始之前随机打乱训练数据的顺序,再按批大小进行分组。这里为了保证每次运行结果一致以便更好地对比不同的优化算法,这里不再随机打乱数据。
与RunnerV2中的训练函数相比,这里使用小批量梯度下降。而与RunnerV3中的训练函数相比,又通过继承优化器基类Optimizer实现不同的优化器。
模型训练train函数的代码实现如下:
def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):
"""
训练神经网络
输入:
- data:训练样本
- num_epochs:训练回合数
- batch_size:批大小
- model:实例化的模型
- calculate_loss:损失函数
- optimizer:优化器
- verbose:日志显示,默认为False
输出:
- iter_loss:每一次迭代的损失值
- epoch_loss:每个回合的平均损失值
"""
# 记录每个回合损失的变化
epoch_loss = []
# 记录每次迭代损失的变化
iter_loss = []
N = len(data)
for epoch_id in range(num_epochs):
# np.random.shuffle(data) #不再随机打乱数据
# 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]
for iter_id, mini_batch in enumerate(mini_batches):
# data中前两个分量为X
inputs = mini_batch[:, :-1]
# data中最后一个分量为y
labels = mini_batch[:, -1:]
# 前向计算
outputs = model(inputs)
# 计算损失
loss = calculate_loss(outputs, labels).numpy()
# 计算梯度
model.backward(labels)
# 梯度更新
optimizer.step()
iter_loss.append(loss)
# verbose = True 则打印当前回合的损失
if verbose:
print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))
epoch_loss.append(np.mean(iter_loss))
return iter_loss, epoch_loss
优化过程可视化 定义plot_loss函数,用于绘制损失函数变化趋势。代码实现如下:
def plot_loss(iter_loss, epoch_loss, fig_name):
"""
可视化损失函数的变化趋势
"""
plt.figure(figsize=(10, 4))
ax1 = plt.subplot(121)
ax1.plot(iter_loss, color='#e4007f')
plt.title('iteration loss')
ax2 = plt.subplot(122)
ax2.plot(epoch_loss, color='#f19ec2')
plt.title('epoch loss')
plt.savefig(fig_name)
plt.show()
对于使用不同优化器的模型训练,保存每一个回合损失的更新情况,并绘制出损失函数的变化趋势,以此验证模型是否收敛。定义train_and_plot函数,调用train和plot_loss函数,训练并展示每个回合和每次迭代(Iteration)的损失变化情况。在模型训练时,使用paddle.nn.MSELoss()计算均方误差。代码实现如下:
import torch.nn as nn
def train_and_plot(optimizer, fig_name):
"""
训练网络并画出损失函数的变化趋势
输入:
- optimizer:优化器
"""
# 定义均方差损失
mse = nn.MSELoss()
iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)
plot_loss(iter_loss, epoch_loss, fig_name)
训练网络并可视化损失函数的变化趋势。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')
模型在优化器上的损失和每次迭代的损失都符合预期。
与Torch API对比,验证正确性
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
x = data[0, :-1].unsqueeze(0)
y = data[0, -1].unsqueeze(0)
model1 = Linear(2)
print('model1 parameter W: ', model1.params['W'].numpy())
opt1 = SimpleBatchGD(init_lr=0.01, model=model1)
output1 = model1(x)
model2 = nn.Linear(2, 1)
model2.weight = torch.nn.Parameter(model1.params['W'])
print('model2 parameter W: ', model2.state_dict()['weight'].numpy())
output2 = model2(x.T)
model1.backward(y)
opt1.step()
print('model1 parameter W after train step: ', model1.params['W'].numpy())
opt2 = torch.optim.SGD(lr=0.01, params=model2.parameters())
loss = torch.nn.functional.mse_loss(output2, y) / 2
loss.backward()
opt2.step()
opt2.zero_grad()
print('model2 parameter W after train step: ', model2.state_dict()['weight'].numpy())
model1 parameter W: [[-0.5221201]
[ 0.6833159]]
model2 parameter W: [[-0.5221201]
[ 0.6833159]]
model1 parameter W after train step: [[-0.5077383]
[ 0.6980365]]
model2 parameter W after train step: [[-0.514031 ]
[ 0.6835834]]
经历一次梯度更新后,两个模型的参数值基本保持一致。
学习率是神经网络优化时的重要超参数。在梯度下降法中,学习率αα的取值非常关键,如果取值过大就不会收敛,如果过小则收敛速度太慢。
常用的学习率调整方法包括如下几种方法:
学习率衰减:如分段常数衰减(Piecewise Constant Decay)、余弦衰减(Cosine Decay)等;
学习率预热:如逐渐预热(Gradual Warmup) 等;
周期性学习率调整:如循环学习率等;
自适应调整学习率的方法:如AdaGrad、RMSprop、AdaDelta等。自适应学习率方法可以针对每个参数设置不同的学习率。
下面我们来详细介绍AdaGrad和RMSprop算法。
构建优化器 定义Adagrad类,继承Optimizer类。定义step函数调用adagrad进行参数更新。代码实现如下
from Op import Optimizer
class Adagrad(Optimizer):
def __init__(self, init_lr, model, epsilon):
"""
Adagrad 优化器初始化
输入:
- init_lr: 初始学习率
- model:模型,model.params存储模型参数值
- epsilon:保持数值稳定性而设置的非常小的常数
"""
super(Adagrad, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.epsilon = epsilon
def adagrad(self, x, gradient_x, G, init_lr):
"""
adagrad算法更新参数,G为参数梯度平方的累计值。
"""
G += gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""
参数更新
"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
2D可视化实验 使用被优化函数展示Adagrad算法的参数更新轨迹。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adagrad(init_lr=0.5, model=model, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para2.pdf')
从图中可以看出,在梯度小的地方,参数更新的要幅度大些,在梯度大的地方,更新的要幅度小些。在这个更新过程中,一开始的梯度是相对较大的,因此算法限制了他的步长,而到了接近目标位置时,梯度就有些小了,这时候算法本应该是增大他的步长,但是由于Adamgrad算法的缺陷,迭代到一定程度时会使得步长达到很小值,很难在向下更新参数,也就是会提前终止搜索过程。
简单拟合实验 训练单层线性网络,验证损失是否收敛。代码实现如下:
# 固定随机种子
torch.seed()
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')
RMSprop算法是一种自适应学习率的方法,可以在有些情况下避免AdaGrad算法中学习率不断单调下降以至于过早衰减的缺点。
构建优化器 定义RMSprop类,继承Optimizer类。定义step函数调用rmsprop更新参数。代码实现如下:
class RMSprop(Optimizer):
def __init__(self, init_lr, model, beta, epsilon):
super(RMSprop, self).__init__(init_lr=init_lr, model=model)
self.G = {}
for key in self.model.params.keys():
self.G[key] = 0
self.beta = beta
self.epsilon = epsilon
def rmsprop(self, x, gradient_x, G, init_lr):
"""
rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
"""
G = self.beta * G + (1 - self.beta) * gradient_x ** 2
x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
return x, G
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
self.model.grads[key],
self.G[key],
self.init_lr)
2D可视化实验 使用被优化函数展示RMSprop算法的参数更新轨迹。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para3.pdf')
RMSprop算法就是对Adamgrad的改进,它优化了梯度小的时候参数的 更新速率,使得即使梯度极小时也会有一定的学习率,这直接的解决了Adamgrad率消失的问题。
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt, 'opti-loss3.pdf')
在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。
一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。
这就是动量法的主要思想
用之前积累动量来替代真正的梯度。每次迭代的梯度可以看作加速度。每次迭代的梯度可以看作加速度。
构建优化器 定义Momentum类,继承Optimizer类。定义step函数调用momentum进行参数更新。代码实现如下:
class Momentum(Optimizer):
def __init__(self, init_lr, model, rho):
"""
Momentum优化器初始化
输入:
- init_lr:初始学习率
- model:模型,model.params存储模型参数值
- rho:动量因子
"""
super(Momentum, self).__init__(init_lr=init_lr, model=model)
self.delta_x = {}
for key in self.model.params.keys():
self.delta_x[key] = 0
self.rho = rho
def momentum(self, x, gradient_x, delta_x, init_lr):
"""
momentum算法更新参数,delta_x为梯度的加权移动平均
"""
delta_x = self.rho * delta_x - init_lr * gradient_x
x += delta_x
return x, delta_x
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
self.model.grads[key],
self.delta_x[key],
self.init_lr)
2D可视化实验 使用被优化函数展示Momentum算法的参数更新轨迹。
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para4.pdf')
动量法的特点在于,当前更新方向跟最近几次的梯度方向有关,因此它倾向于保留最近几次的记忆,也因此,当最近几次梯度都很大时,它会很难对突降的梯度做出较大的反应,反过来也一样,图中的摆尾现象就很好的说明了这一点。
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')
Adam算法(自适应矩估计算法)可以看作动量法和RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。
构建优化器 定义Adam类,继承Optimizer类。定义step函数调用adam函数更新参数。代码实现如下:
class Adam(Optimizer):
def __init__(self, init_lr, model, beta1, beta2, epsilon):
"""
Adam优化器初始化
输入:
- init_lr:初始学习率
- model:模型,model.params存储模型参数值
- beta1, beta2:移动平均的衰减率
- epsilon:保持数值稳定性而设置的常数
"""
super(Adam, self).__init__(init_lr=init_lr, model=model)
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.M, self.G = {}, {}
for key in self.model.params.keys():
self.M[key] = 0
self.G[key] = 0
self.t = 1
def adam(self, x, gradient_x, G, M, t, init_lr):
"""
adam算法更新参数
输入:
- x:参数
- G:梯度平方的加权移动平均
- M:梯度的加权移动平均
- t:迭代次数
- init_lr:初始学习率
"""
M = self.beta1 * M + (1 - self.beta1) * gradient_x
G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
M_hat = M / (1 - self.beta1 ** t)
G_hat = G / (1 - self.beta2 ** t)
t += 1
x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
return x, G, M, t
def step(self):
"""参数更新"""
for key in self.model.params.keys():
self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
self.model.grads[key],
self.G[key],
self.M[key],
self.t,
self.init_lr)
2D可视化实验 使用被优化函数展示Adam算法的参数更新轨迹。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adam(init_lr=0.2, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para5.pdf')
简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:
# 固定随机种子
torch.manual_seed(0)
# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt, 'opti-loss5.pdf')
定义OptimizedFunction3D算子,表示被优化函数f(x)=x[0]2+x[1]2+x[1]3+x[0]*x[1],其中x[0], x[1]代表两个参数。该函数在(0,0)处存在鞍点,即一个既不是极大值点也不是极小值点的临界点。希望训练过程中,优化算法可以使参数离开鞍点,向模型最优解收敛。代码实现如下:
class OptimizedFunction3D(Op):
def __init__(self):
super(OptimizedFunction3D, self).__init__()
self.params = {'x': 0}
self.grads = {'x': 0}
def forward(self, x):
self.params['x'] = x
return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]
def backward(self):
x = self.params['x']
gradient1 = 2 * x[0] + x[1]
gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]
grad1 = torch.Tensor([gradient1])
grad2 = torch.Tensor([gradient2])
self.grads['x'] = torch.cat([grad1, grad2])
对于相同的被优化函数,分别使用不同的优化器进行参数更新,并保存不同优化器下参数更新的值,用于可视化。代码实现如下:
# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]
x_all_opts = []
z_all_opts = []
# 使用不同优化器训练
for model, opt in zip(models, opts):
x_init = torch.FloatTensor([2, 3])
x_one_opt, z_one_opt = train_f(model, opt, x_init, 150) # epoch
# 保存参数值
x_all_opts.append(x_one_opt.numpy())
z_all_opts.append(np.squeeze(z_one_opt))
Visualization3D函数,用于可视化三维的参数更新轨迹。
class Visualization3D(animation.FuncAnimation):
""" 绘制动态图像,可视化参数更新轨迹 """
def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):
"""
初始化3d可视化类
输入:
xy_values:三维中x,y维度的值
z_values:三维中z维度的值
labels:每个参数更新轨迹的标签
colors:每个轨迹的颜色
interval:帧之间的延迟(以毫秒为单位)
blit:是否优化绘图
"""
self.fig = fig
self.ax = ax
self.xy_values = xy_values
self.z_values = z_values
frames = max(xy_value.shape[0] for xy_value in xy_values)
self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
for _, label, color in zip_longest(xy_values, labels, colors)]
super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
interval=interval, blit=blit, **kwargs)
def init_animation(self):
# 数值初始化
for line in self.lines:
line.set_data([], [])
# line.set_3d_properties(np.asarray([])) # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4
return self.lines
def animate(self, i):
# 将x,y,z三个数据传入,绘制三维图像
for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
line.set_data(xy_value[:i, 0], xy_value[:i, 1])
line.set_3d_properties(z_value[:i])
return self.lines
绘制出被优化函数的三维图像。代码实现如下:
# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))
model = OptimizedFunction3D()
# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy() # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='rainbow')
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#f6373c', '#f6f237', '#45f637', '#37f0f6', '#000000']
animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
plt.show()
结果很好的表现了几种优化算法面对逃逸问题的处理效果,从结果来看,只有动量法成功逃离了极小值点,这也是其优势所在,而另外几种算法,就被困在了极小值点的位置,因此对于这种问题,要把各种算法都尝试一遍。
总结:尝试了各种优化算法对简单问题的优化过程,观察了他们的优化特点,细致了解了他们对简单问题的优化过程,从而加深了对他们的理解。