自动驾驶运动规划中会用到各种曲线,主要用于生成车辆变道的轨迹,高速场景中使用的是五次多项式曲线,城市场景中使用的是分段多项式曲线(piecewise),相比多项式,piecewise能够生成更为复杂的路径。另外对于自由空间,可以使用A*搜索出的轨迹再加以cilqr加以平滑,也能直接供控制使用。下面的内容不一定都对,欢迎大家一起交流学习~
目录
基础类
三次多项式曲线
四次多项式曲线
五次多项式曲线
下期预告:piecewise曲线
// 基类Curve1d,定义一维曲线(变量是时间)
class Curve1d {
public:
// 构造函数
Curve1d() = default;
// 拷贝构造函数
Curve1d(const Curve1d& other) = default;
// 有继承的基类的析构函数需要定义为虚函数
virtual ~Curve1d() = default;
// 纯虚函数,子类实现,曲线不同阶数对应的param时刻的结果
virtual double Evaluate(const std::uint32_t order, const double param) const = 0;
// 纯虚函数,子类实现,时长
virtual double ParamLength() const = 0;
};
构造函数定义
x0初始位置,dx0初始速度,ddx0初始加速度,x1终点位置,param时间长度,这个很好理解
// 定义了两种构造函数的实现
// 第一种构造函数的实现是直接调用第二种构造函数
CubicPolynomialCurve1d::CubicPolynomialCurve1d(const std::array& start, const double end, const double param)
: CubicPolynomialCurve1d(start[0], start[1], start[2], end, param) {}
// 第二种构造函数,x0初始位置,dx0初始速度,ddx0初始加速度,x1终点位置,param时间长度
CubicPolynomialCurve1d::CubicPolynomialCurve1d(const double x0, const double dx0, const double ddx0, const double x1,
const double param) {
ComputeCoefficients(x0, dx0, ddx0, x1, param);
param_ = param;
start_condition_[0] = x0;
start_condition_[1] = dx0;
start_condition_[2] = ddx0;
end_condition_ = x1;
}
计算多项式系数
方法1:一般地,自动驾驶里初始状态对应的是当前时刻,规划时长为param的轨迹,可以理解初始状态即为0时刻的状态,这样的话,多项式系数就很好求出来了
void CubicPolynomialCurve1d::ComputeCoefficients(const double x0, const double dx0, const double ddx0, const double x1,
const double param) {
assert(param > 0.0);
const double p2 = param * param;
const double p3 = param * p2;
coef_[0] = x0;
coef_[1] = dx0;
coef_[2] = 0.5 * ddx0;
coef_[3] = (x1 - x0 - dx0 * param - coef_[2] * p2) / p3;
}
方法2:已知初始和终点的位置和速度,没有加速度,也比较简单,C2和C3需要手动推算下
, p为终点时刻
// 注意这里的返回类型,用到了this指针,相当于返回一个实例化的类
CubicPolynomialCurve1d& CubicPolynomialCurve1d::FitWithEndPointFirstOrder(const double x0, const double dx0, const double x1,
const double dx1, const double param) {
if (param <= 0.0) {
return *this;
}
param_ = param;
coef_[0] = x0;
coef_[1] = dx0;
double param2 = param * param;
double param3 = param2 * param;
double b0 = dx1 + 2 * coef_[1];
double b1 = dx1 + coef_[1];
coef_[2] = (3 * x1 - b0 * param -3 * coef_[0]) / param2;
coef_[3] = (2 * coef_[0] + b1 * param - 2 * x1) / param3;
return *this;
}
方法3:通过四次多项式曲线来推算,这里用到四次多项式求导为三次多项式的关系
以此类推
// 这里为什么要用静态类型转换static_cast
void CubicPolynomialCurve1d::DerivedFromQuarticCurve(const PolynomialCurve1d& other) {
assert(other.Order() == 4);
param_ = other.ParamLength();
for (size_t i = 1; i < 5; ++i) {
coef_[i - 1] = other.Coef(i) * static_cast(i);
}
}
多项式曲线阶数求值
这里代码有点没太看懂,p是param的几次方?
double CubicPolynomialCurve1d::Evaluate(const std::uint32_t order, const double p) const {
switch (order) {
case 0: {
return ((coef_[3] * p + coef_[2]) * p + coef_[1]) * p + coef_[0];
}
case 1: {
return (3.0 * coef_[3] * p + 2.0 * coef_[2]) * p + coef_[1];
}
case 2: {
return 6.0 * coef_[3] * p + 2.0 * coef_[2];
}
case 3: {
return 6.0 * coef_[3];
}
default:
return 0.0;
}
}
构造函数
四次多项式有五个系数,所以需要五个状态量
QuarticPolynomialCurve1d::QuarticPolynomialCurve1d(
const std::array& start, const std::array& end,
const double param)
: QuarticPolynomialCurve1d(start[0], start[1], start[2], end[0], end[1],
param) {}
QuarticPolynomialCurve1d::QuarticPolynomialCurve1d(
const double x0, const double dx0, const double ddx0, const double dx1,
const double ddx1, const double param) {
param_ = param;
start_condition_[0] = x0;
start_condition_[1] = dx0;
start_condition_[2] = ddx0;
end_condition_[0] = dx1;
end_condition_[1] = ddx1;
ComputeCoefficients(x0, dx0, ddx0, dx1, ddx1, param);
}
求解多项式系数
方法1:已知初始状态x0,dx0,ddx0和终点状态dx1,ddx1,相当于终点的位置是不确定的。代码中C3和C4计算没有使用C1和C2,是避免计算过程中带来的误差,是一种较好的处理方法。但阅读起来可能不直观,可以参考下面公式,实质是一样的。
void QuarticPolynomialCurve1d::ComputeCoefficients(
const double x0, const double dx0, const double ddx0, const double dx1,
const double ddx1, const double p) {
CHECK_GT(p, 0.0);
coef_[0] = x0;
coef_[1] = dx0;
coef_[2] = 0.5 * ddx0;
double b0 = dx1 - ddx0 * p - dx0;
double b1 = ddx1 - ddx0;
double p2 = p * p;
double p3 = p2 * p;
coef_[3] = (3 * b0 - b1 * p) / (3 * p2);
coef_[4] = (-2 * b0 + b1 * p) / (4 * p3);
}
方法2和3:终点或初始位置的加速度不确定,已知其他参数,推导过程与上面类似,注意这里返回的是实例化的类
QuarticPolynomialCurve1d& QuarticPolynomialCurve1d::FitWithEndPointFirstOrder(
const double x0, const double dx0, const double ddx0, const double x1,
const double dx1, const double p) {
CHECK_GT(p, 0.0);
param_ = p;
coef_[0] = x0;
coef_[1] = dx0;
coef_[2] = 0.5 * ddx0;
double p2 = p * p;
double p3 = p2 * p;
double p4 = p3 * p;
double b0 = x1 - coef_[0] - coef_[1] * p - coef_[2] * p2;
double b1 = dx1 - dx0 - ddx0 * p;
coef_[4] = (b1 * p - 3 * b0) / p4;
coef_[3] = (4 * b0 - b1 * p) / p3;
return *this;
}
QuarticPolynomialCurve1d& QuarticPolynomialCurve1d::FitWithEndPointSecondOrder(
const double x0, const double dx0, const double x1, const double dx1,
const double ddx1, const double p) {
CHECK_GT(p, 0.0);
param_ = p;
coef_[0] = x0;
coef_[1] = dx0;
double p2 = p * p;
double p3 = p2 * p;
double p4 = p3 * p;
double b0 = x1 - coef_[0] - coef_[1] * p;
double b1 = dx1 - coef_[1];
double c1 = b1 * p;
double c2 = ddx1 * p2;
coef_[2] = (0.5 * c2 - 3 * c1 + 6 * b0) / p2;
coef_[3] = (-c2 + 5 * c1 - 8 * b0) / p3;
coef_[4] = (0.5 * c2 - 2 * c1 + 3 * b0) / p4;
return *this;
}
方法4和5:根据三次多项式积分或五次多项式微分得到
QuarticPolynomialCurve1d& QuarticPolynomialCurve1d::IntegratedFromCubicCurve(
const PolynomialCurve1d& other, const double init_value) {
CHECK_EQ(other.Order(), 3U);
param_ = other.ParamLength();
coef_[0] = init_value;
for (size_t i = 0; i < 4; ++i) {
coef_[i + 1] = other.Coef(i) / (static_cast(i) + 1);
}
return *this;
}
QuarticPolynomialCurve1d& QuarticPolynomialCurve1d::DerivedFromQuinticCurve(
const PolynomialCurve1d& other) {
CHECK_EQ(other.Order(), 5U);
param_ = other.ParamLength();
for (size_t i = 1; i < 6; ++i) {
coef_[i - 1] = other.Coef(i) * static_cast(i);
}
return *this;
}
多项式曲线阶数求值
double QuarticPolynomialCurve1d::Evaluate(const std::uint32_t order,
const double p) const {
switch (order) {
case 0: {
return (((coef_[4] * p + coef_[3]) * p + coef_[2]) * p + coef_[1]) * p +
coef_[0];
}
case 1: {
return ((4.0 * coef_[4] * p + 3.0 * coef_[3]) * p + 2.0 * coef_[2]) * p +
coef_[1];
}
case 2: {
return (12.0 * coef_[4] * p + 6.0 * coef_[3]) * p + 2.0 * coef_[2];
}
case 3: {
return 24.0 * coef_[4] * p + 6.0 * coef_[3];
}
case 4: {
return 24.0 * coef_[4];
}
default:
return 0.0;
}
}
整体思路和四次多项式类型,附上代码,可以参考上面思路理解
在具体代码实现时,数值求解比矩阵计算效率更高
QuinticPolynomialCurve1d::QuinticPolynomialCurve1d(
const std::array& start, const std::array& end,
const double param)
: QuinticPolynomialCurve1d(start[0], start[1], start[2], end[0], end[1],
end[2], param) {}
QuinticPolynomialCurve1d::QuinticPolynomialCurve1d(
const double x0, const double dx0, const double ddx0, const double x1,
const double dx1, const double ddx1, const double param) {
ComputeCoefficients(x0, dx0, ddx0, x1, dx1, ddx1, param);
start_condition_[0] = x0;
start_condition_[1] = dx0;
start_condition_[2] = ddx0;
end_condition_[0] = x1;
end_condition_[1] = dx1;
end_condition_[2] = ddx1;
param_ = param;
}
void QuinticPolynomialCurve1d::ComputeCoefficients(
const double x0, const double dx0, const double ddx0, const double x1,
const double dx1, const double ddx1, const double p) {
CHECK_GT(p, 0.0);
coef_[0] = x0;
coef_[1] = dx0;
coef_[2] = ddx0 / 2.0;
const double p2 = p * p;
const double p3 = p * p2;
// the direct analytical method is at least 6 times faster than using matrix
// inversion.
const double c0 = (x1 - 0.5 * p2 * ddx0 - dx0 * p - x0) / p3;
const double c1 = (dx1 - ddx0 * p - dx0) / p2;
const double c2 = (ddx1 - ddx0) / p;
coef_[3] = 0.5 * (20.0 * c0 - 8.0 * c1 + c2);
coef_[4] = (-15.0 * c0 + 7.0 * c1 - c2) / p;
coef_[5] = (6.0 * c0 - 3.0 * c1 + 0.5 * c2) / p2;
}
void QuinticPolynomialCurve1d::IntegratedFromQuarticCurve(
const PolynomialCurve1d& other, const double init_value) {
CHECK_EQ(other.Order(), 4U);
param_ = other.ParamLength();
coef_[0] = init_value;
for (size_t i = 0; i < 5; ++i) {
coef_[i + 1] = other.Coef(i) / (static_cast(i) + 1);
}
}
double QuinticPolynomialCurve1d::Evaluate(const uint32_t order,
const double p) const {
switch (order) {
case 0: {
return ((((coef_[5] * p + coef_[4]) * p + coef_[3]) * p + coef_[2]) * p +
coef_[1]) *
p +
coef_[0];
}
case 1: {
return (((5.0 * coef_[5] * p + 4.0 * coef_[4]) * p + 3.0 * coef_[3]) * p +
2.0 * coef_[2]) *
p +
coef_[1];
}
case 2: {
return (((20.0 * coef_[5] * p + 12.0 * coef_[4]) * p) + 6.0 * coef_[3]) *
p +
2.0 * coef_[2];
}
case 3: {
return (60.0 * coef_[5] * p + 24.0 * coef_[4]) * p + 6.0 * coef_[3];
}
case 4: {
return 120.0 * coef_[5] * p + 24.0 * coef_[4];
}
case 5: {
return 120.0 * coef_[5];
}
default:
return 0.0;
}
}