生物信息学习的正确姿势
NGS系列文章包括NGS基础、在线绘图、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 (ChIP-seq基本分析流程)、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程)、DNA甲基化分析、重测序分析、GEO数据挖掘(典型医学设计实验GEO数据分析 (step-by-step))、批次效应处理等内容。
StatQuest是原北卡罗来纳大学教堂山分校的Josh Starmer制作的一系列生信分析统计学习视频,发布于YouTube,广受好评。但因为YouTube限制国内用户的访问,观看起来不方便,这里也感谢song-chao博士联系Josh Starmer获取了授权并上传至B站,部分视频还增加了中文字幕,更利于学习和理解。
从2020年2月起,Josh Starmer任创始人和CEO,全职制作StatQuest系列视频,后续也会越来越丰富。
StatQuest - 直方图 (Histograms, Clearly Explained) (中英字幕)_
StatQuest - 什么是统计分布?(What is a statistical distribution?)(中英字幕)
StatQuest - 正态分布 (The Normal Distribution)(中英字幕)
StatQuest - 统计基础之总体参数 (中英字幕)
StatQuest - 统计基础之均值, 方差和标准差 (中英字幕)
StatQuest - 协方差与相关性之协方差(Covariance and Correlation)(中英字幕)
StatQuest - 协方差与相关性之相关性(Covariance and Correlation)
StatQuest - 什么是统计模型?(What is a statistical model?)(中英字幕)
StatQuest - 抽样分布 (Sampling A Distribution)(中英字幕)
StatQuest - 中心极限定理 (The Central Limit Theorem)(中英字幕)
StatQuest - 技术重复和生物学重复 (Technical and Biological Replicates )(中英字幕)
StatQuest - 样本容量和有效样本容量 (Sample Size and Effective Sample Size )(中英字幕)
StatQuest - 标准偏差与标准误差 (Standard Deviation vs Standard Error )(中英字幕)
StatQuest - 标准误差 (The Standard Error)(中英字幕)
StatQuest - 条形图相较于饼图是更好的选择 (Bar Charts Are Better than Pie Charts )(中英字幕)
StatQuest - 清楚的理解箱图 (Boxplots, Clearly Explained )(中英字幕)
StatQuest - 清楚的理解:对数转换 (logarithms, clearly explained )(中英字幕)
StatQuest - R方(R-squared)(中英字幕)
StatQuest - 置信区间 (Confidence Intervals)(中英字幕)
StatQuest - P值 (P-value) (中英字幕)
StatQuest - 显著性阈值 (Thresholds for Significance)(中英字幕)
StatQuest - 如何选择T检验?(Which t test to use?)(中英字幕)
StatQuest - 单尾(侧)还是双尾(侧) P值?(One or Two Tailed P-values)(中英字幕)
StatQuest - 二项分布与检验 (The Binomial Distribution and Test)(中英字幕)
StatQuest - 分位数和百分位数 (Quantiles and Percentiles)(中英字幕)
StatQuest - 清晰解释:Q-Q 图 (Quantile-Quantile Plots)(中英字幕)
StatQuest - 分位数标准化 (Quantile Normalization)(中英字幕)
StatQuest - 概率与似然 (Probability vs Likelihood)(中英字幕)
StatQuest - 清晰解释:最大似然 (Maximum Likelihood, clearly explained!!)(中英字幕)
StatQuest-指数分布的最大似然 (Maximum Likelihood for the Exponential Distribution)(中英字幕)
StatQuest - 为什么除以 n 会低估了方差?(中英字幕)
StatQuest - 二项分布的最大似然 (Maximum Likelihood for the Binomial Distribution)(中英字幕)
StatQuest - 正态分布的最大似然 (Maximum Likelihood For the Normal Distribution)(中英字幕)
StatQuest - 比率和比率对数 (Odds and log Odds)(中英字幕)
StatQuest - 比率比和比率比对数 (Odds Ratios and Log(Odds Ratios))(中英字幕)
StatQuest - RNA-Seq 简介(A introduction to RNA-seq)(中英字幕)
StatQuest - ChIP-Seq 简介(A gentle introduction to ChIP-Seq)
StatQuest - PCA中的主要概念(PCA main ideas)(中英字幕)
StatQuest -主成分分析(Principal Component Analysis (PCA))-2015版
StatQuest - 主成分分析(PCA)(中英字幕)
StatQuest - PCA 的一些技巧 (Practical Tips)(中英字幕)
StatQuest - R实现主成分分析 (中英字幕)
StatQuest - Python中实现主成分分析(PCA in Python)
StatQuest - RPKM, FPKM and TPM
StatQuest - MDS and PCoA
StatQuest - R中实现MDS and PCoA(MDS and PCoA in R)
StatQuest_ t-SNE(中英字幕)
StatQuest -关于热图的思考和解释(Heatmaps - considerations for drawing and interpreting)
StatQuest - 层次聚类(Hierarchical Clustering)
StatQuest - K均值聚类(K-means clustering)
StatQuest - DESeq2 文库标准化 (DESeq2 - Library Normalization)(中英字幕)
StatQuest - edgeR 文库标准化 (edgeR - Library Normalization)(中英字幕)
StatQuest -edgeR 和 DESeq2 之 Independent Filtering
StatQuest - P值 (P-value) (中英字幕)
StatQuest - FDR and the Benjamini-Hochberg Method
StatQuest -用Fisher's Exact Test 和超几何分布进行富集分析(Enrichment Analysis)
StatQuest - RNA-Seq中的技术重复问题(the problem with technical replicates)(中英字幕)
StatQuest - 线性模型之设计矩阵(Linear Models - Design Matrices)
StatQuest - 清楚的理解:对数转换 (logarithms, clearly explained )(中英字幕)
StatQuest - 线性模型之线性回归 - P1(Linear Models - Linear Regression)
StatQuest - R中实现线性回归(中英字幕)
StatQuest - 线性模型之t检验与单因素方差分析(Linear Models - t-tests and ANOVA)
StatQuest -线性模型之设计矩阵R实例(Linear Models - Design Matrix Examples in R)
StatQuest - 拟合线到数据上(最小二乘法)(Fitting a line to data)(中英字幕)
StatQuest - 线性模型之线性回归 - P1(Linear Models - Linear Regression)
StatQuest - R中实现线性回归(中英字幕)
StatQuest - 线性模型之多重回归(Linear Models - Multiple Regression)
StatQuest - R中实现多重回归 (中英字幕)
StatQuest - 线性模型之t检验与单因素方差分析(Linear Models - t-tests and ANOVA)
StatQuest - 线性模型之设计矩阵(Linear Models - Design Matrices)
StatQuest -线性模型之设计矩阵R实例(Linear Models - Design Matrix Examples in R)
StatQuest - P值 (P-value) (中英字幕)
StatQuest - R方(R-squared)(中英字幕)
StatQuest - 比率和比率对数 (Odds and log Odds)(中英字幕)
StatQuest - 比率比和比率比对数 (Odds Ratios and Log(Odds Ratios))(中英字幕)
StatQuest - 逻辑回归(Logistic Regression)
StatQuest - 逻辑回归详解之系数(Logistic Regression Details - Coefficients)
StatQuest -逻辑回归详解之R方和P值(Logistic Regression Details - R-squared and p-value)
StatQuest -逻辑回归详解之最大似然(Logistic Regression Details - Maximum Likelihood)
StatQuest - 逻辑回归R实例(Logistic Regression in R)
StatQuest - 饱和模型和偏常(Saturated Models and Deviance)
StatQuest - 偏常残差(Deviance Residuals)
StatQuest - 机器学习基础简介 (中英字幕)
StatQuest - 机器学习——交叉验证(中英字幕)
StatQuest - 机器学习—混淆矩阵(Confusion Matrix)(中英字幕)
StatQuest - 机器学习基础——敏感度和特异性
StatQuest - 机器学习基础—偏差和方差(Bias and Variance)
StatQuest -ROC 和 AUC
StatQuest - ROC 和ACU 的 R 实例
StatQuest - 拟合线到数据上(Fitting a line to data)
StatQuest - 比率和比率对数 (Odds and log Odds)(中英字幕)
StatQuest - 比率比和比率比对数 (Odds Ratios and Log(Odds Ratios))(中英字幕)
StatQuest - 逻辑回归(Logistic Regression)
StatQuest - 逻辑回归详解之系数(Logistic Regression Details - Coefficients)
StatQuest -逻辑回归详解之R方和P值(Logistic Regression Details - R-squared and p-value)
StatQuest -逻辑回归详解之最大似然(Logistic Regression Details - Maximum Likelihood)
StatQuest - 逻辑回归R实例(Logistic Regression in R)
StatQuest - 饱和模型和偏常(Saturated Models and Deviance)
StatQuest - 偏常残差(Deviance Residuals)
StatQuest - 规 (正) 则化之岭回归 (Ridge Regression)
StatQuest - 规 (正) 则化之 Lasso 回归
StatQuest - 正则化之弹性网络回归 (Elastic Net Regression)
StatQuest - R 中实现正则、Lasso和弹性网络回归
StatQuest - 线性判别分析(LDA)
StatQuest - 主成分分析(PCA)(中英字幕)
StatQuest - PCA中的主要概念(PCA main ideas)(中英字幕)
StatQuest - PCA 的一些技巧 (Practical Tips)
StatQuest - R实现主成分分析 (中英字幕)
StatQuest - Python中实现主成分分析(PCA in Python)
StatQuest - MDS and PCoA
StatQuest - R中实现MDS and PCoA(MDS and PCoA in R)
StatQuest_ t-SNE(中英字幕)
StatQuest - 层次聚类(Hierarchical Clustering)
StatQuest - K均值聚类(K-means clustering)
StatQuest - 机器学习—— K 邻近法
StatQuest - 决策树(Decision Trees)
StatQuest - 决策树—特征选择和缺失值(Feature Selection and Missing Data)
StatQuest - 回归树 (Regression Trees)
StatQuest - 如何修剪回归树?(How to Prune Regression Trees)
StatQuest - 随机森林的建立、应用和评估
StatQuest - R中实现随机森林
StatQuest - 梯度下降法 (Gradient Descent)
StatQuest - 随机梯度下降法(Stochastic Gradient Descent)
StatQuest - 支持向量机(Support Vector Machines)
StatQuest - 支持向量机之多项式核 (SVM-The Polynomical Kernel)
StatQuest - 支持向量机之 RBF 核(SVM-The Radial Kernel)
StatQuest - 机器学习—自适应增强法(Adaptive Boost)
StatQuest - Gradient Boost的主要回归思想
StatQuest - Gradient Boost之回归详解
StatQuest - Gradient Boost中的分类概念
StatQuest - Gradient Boost之分类详解
StatQuest - 拟合曲线到数据上——lowess 和 loess
StatQuest -主成分分析(Principal Component Analysis (PCA))-2015
StatQuest - 逻辑回归(Logistic Regression)
StatQuest - 逻辑回归详解之系数(Logistic Regression Details - Coefficients)
StatQuest -逻辑回归详解之最大似然(Logistic Regression Details - Maximum Likelihood)
StatQuest -逻辑回归详解之R方和P值(Logistic Regression Details - R-squared and p-value)
StatQuest - 逻辑回归R实例(Logistic Regression in R)
StatQuest - 饱和模型和偏常(Saturated Models and Deviance)
Youtube链接:https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
B站链接:https://space.bilibili.com/257347536(点击阅读原文直达)
知乎介绍:https://zhuanlan.zhihu.com/p/85307437
Hi! I’m Josh Starmer and welcome to StatQuest! StatQuest started out as an attempt to explain statistics to my former co-workers – who were all genetics researchers at UNC-Chapel Hill. They did amazing experiments, but they didn’t always know what to do with the data they generated. That was my job. But I wanted them to understand that what I did wasn’t magic – it was actually quite simple. It only seemed hard because it was wrapped up in confusing terminology and typically communicated using equations. I found that if I stripped away the terminology and communicated the concepts using pictures, it became easy to understand.
Over time I made more and more StatQuests and now it’s my passion on YouTube.
What people are saying about StatQuest!!!
“StatQuest is by far my favorite resource because of the extremely clever delivery of the content (and not to mention the awesome song introductions!)” – Lara Ozkan, winner of the Yale Science and Engineering Award
后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集