- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 基于 MATLAB仿真卡尔曼滤波原理及应用
资深码侬
matlabmatlab开发语言
基于MATLAB仿真卡尔曼滤波原理及应用简介:《卡尔曼滤波原理及应用:MATLAB仿真》主要介绍数字信号处理中的卡尔曼(Kalman)滤波算法及在相关领域应用。《卡尔曼滤波原理及应用:MATLAB仿真》共7章。第1章为绪论。第2章介绍MATLAB算法仿真的编程基础。第3章介绍线性Kalman滤波。第4章讨论扩展Kalman滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。第5章介绍UKF滤波算法
- Mean Shift聚类算法深度解析与实战指南
万事可爱^
机器学习修仙之旅#无监督学习算法聚类数据挖掘MeanShift均值漂移聚类均值算法
一、算法全景视角MeanShift(均值漂移)是一种基于密度梯度上升的非参数聚类算法,无需预设聚类数量,通过迭代寻找概率密度函数的局部最大值完成聚类。该算法在图像分割、目标跟踪等领域有广泛应用,尤其擅长处理任意形状的密度分布。二、核心原理剖析2.1核密度估计使用核函数对数据分布进行平滑估计,高斯核函数为:K(x)=12πhe−x22h2K(x)=\frac{1}{\sqrt{2\pi}h}e^{-
- 目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测
林聪木
无人机目标检测人工智能
目录知识储备YOLOv8无人机拍摄视角小目标检测数据集结构环境部署说明安装依赖模型训练权重和指标可视化展示训练YOLOv8PyQt5GUI开发主窗口代码main_window.py使用说明无人机目标跟踪一、目标跟踪的基本原理二、常用的目标跟踪算法基于YOLOv8+图像分割优化关键优化策略(基于VisDrone数据集实验验证)1.模型结构改进2.数据增强策略3.后处理优化4.训练技巧三、性能优化建议
- 大模型专栏博文汇总和索引
Donvink
大模型transformer深度学习人工智能语言模型
大模型专栏主要是汇总了我在学习大模型相关技术期间所做的一些总结和笔记,主要包括以下几个子专栏:DeepSeek-R1AIGC大模型实践Transformer多模态系统视频理解对比学习目标检测目标跟踪图神经网络大模型专栏汇总了以上所有子专栏的论文,目前暂时先按照不同的技术领域划分子专栏,子专栏之间的内容可能会有交集,不完全是独立的。为了方便查阅相关模块的内容,故以此文章进行汇总与索引。一、DeepS
- 25/2/18 <算法笔记> ByteTrack
青椒大仙KI11
笔记
ByteTrack(发表在2021年)是一种高效且精确的**多目标跟踪(Multi-ObjectTracking,MOT)**算法。它属于目标跟踪领域中基于检测的类别(trackingbydetection),核心思想是利用目标检测器的高置信度和低置信度检测结果,通过简单的后处理策略实现高效和准确的目标跟踪。多目标跟踪(MOT)的主要目的是对视频或帧序列中的多个对象进行检测和跟踪。在MOT方法中通
- 仿生机器人核心技术与大小脑
天机️灵韵
人工智能具身智能硬件设备机器人人工智能具身智能
以下是针对仿生机器人核心技术的结构化总结,涵盖通用核心技术与**“大脑-小脑”专用架构**两大方向:一、机器人通用核心技术这些技术是仿生机器人实现功能的基础,与生物体的“身体能力”对应:1.感知与交互技术多模态传感器融合视觉:3D视觉(如RGB-D相机)、动态目标跟踪(如光流算法)。触觉:柔性电子皮肤、分布式压力传感器(模仿人类皮肤)。听觉:声源定位、噪声抑制(如麦克风阵列)。环境感知:激光雷达(
- 轻量化网络模型调研报告
云雨、
网络人工智能深度学习
一、轻量化网络的为何诞生 深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行,如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行
- 解锁业务增长密钥:目标跟踪指标实战指南
团队协作工具
GoalTrackingMetric(目标跟踪指标)是营销、数据分析及业务管理领域中用于衡量特定业务或营销目标实现情况的一系列关键绩效指标(KPIs)。这些指标帮助企业或组织明确其业务目标,跟踪并评估其营销活动或业务策略的有效性,以及识别潜在的改进机会。目标跟踪指标通常基于企业或组织的长期战略目标和短期业务目标来设定。它们可能涉及多个方面,包括但不限于:●网站和应用程序性能:如网站转化率、用户参与
- CVPR‘24开源 | ADA-Track:端到端3D多目标跟踪最新SOTA!
计算机视觉工坊
3D视觉从入门到精通3d目标跟踪人工智能
编辑:计算机视觉工坊添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3DGS系列、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
- 【计算机视觉】目标跟踪应用
油泼辣子多加
计算机视觉计算机视觉目标跟踪人工智能
一、简介目标跟踪是指根据目标物体在视频当前帧图像中的位置,估计其在下一帧图像中的位置。视频帧由t到t+1的检测,虽然也可以使用目标检测获取,但实际应用中往往是不可行的,原因如下:目标跟踪的目的是根据目标在当前视频帧图像中的位置,预测其在下一帧图像中的位置。然而,使用目标检测直接获取目标位置的方式在实际应用中存在一些限制,主要原因如下:1.实时性问题频繁检测开销大:目标检测通常需要对每一帧的整个图像
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- 【视觉算法—视频目标跟踪】基于camshift实现视频目标实时追踪
明月下
视觉算法opencvpython音视频
本文代码功能:1.获取摄像头,实时显示2.鼠标获取第一帧中的目标roi区域3.在视频中实时对目标进行追踪。4.两种目标追踪的方式:‘meanshift’,‘camshift’5.保存视频代码准备新建test.py,复制以下代码:importcv2ascvimportnumpyasnpglobalmin_y,height,min_x,width#1代表打开外置摄像头,外置多个摄像头可依此枚举0,1,
- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
ATM006
目标检测
ppdet.metrics.mcmot_metricsWARNING:gt_filename'{}'ofMCMOTEvaluatorisnotexist,sotheMOTAwillbe-INFPaddleDetection/ppdet/metrics/mcmot_metrics.pyclassMCMOTEvaluator(object):def__init__(self,data_root,seq
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 吉格勒定理:你是一个有目标的人吗
Garey_8132
心理学家对哈佛大学的一批毕业生进行过一次人生目标跟踪调查。在调查中,研究人员发现:这些毕业生中有3%的人曾经确立了远大的目标;有10%的人有明确的短期目标;有60%的人目标不清晰,只求过好眼下的生活;还有27%的人几乎没有目标,完全是随遇而安。20年后,研究人员惊奇地发现:曾经树立过远大目标的3%的人,大都完成了自己的既定目标,事业有成;那10%的人虽没有卓尔不群,但也是社会中的上层人士;那60%
- 互联网加竞赛 基于深度学习的视频多目标跟踪实现
Mr.D学长
pythonjava
文章目录1前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后1前言优质竞赛项目系列,今天要分享的是基于深度学习的视频多目标跟踪实现该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postg
- 第九篇【传奇开心果系列】Python的OpenCV技术点案例示例:目标跟踪
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv目标跟踪
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言二、常用的目标跟踪功能、高级功能和增强跟踪技术介绍三、常用的目标跟踪功能示例代码四、OpenCV高级功能示例代码五、OpenCV跟踪目标增强技术示例代码六、归纳总结系列短博文目录Python的OpenCV技术点案例示例系列短博文目录前言目标跟踪:包括多目标跟踪、运动目标跟踪等功能。OpenCV是一个流行的计
- 【Visual Object Tracking】Learning notes
bryant_meng
CNN/Transformer读书笔记深度学习人工智能单目标跟踪VOT
DenseOpticalTracking:ConnectingtheDots参考学习来自:单目标跟踪Siamese系列网络:SiamFC、SiamRPN、one-shot跟踪、one-shotting单样本学习、DaSiamRPN、SiamRPN++、SiamMask单目标跟踪:跟踪效果/单目标跟踪:数据集处理/单目标跟踪:模型搭建/单目标跟踪:模型训练/单目标跟踪:模型测试单目标跟踪SiamMa
- 开源计算机视觉库OpenCV详解和实际运用案例
黑夜照亮前行的路
计算机视觉
开源计算机视觉库OpenCV是一个功能强大的工具,广泛应用于图像处理和计算机视觉领域。它包含许多优化算法,涵盖了图像处理、特征检测、目标跟踪等多个方面的功能。以下是对OpenCV的详细解释和一些实际应用案例。一、OpenCV的模块和功能OpenCV主要包含以下几个模块:核心功能模块:包含基本的图像处理和计算机视觉功能,如图像读取、显示、保存、变换等。图像处理模块:提供一系列图像处理算法,如滤波、边
- 室内定位系列
_49_
室内定位系列(一)——WiFi位置指纹(译)室内定位系列(二)——仿真获取RSS数据室内定位系列(三)——位置指纹法的实现(KNN)室内定位系列(四)——位置指纹法的实现(测试各种机器学习分类器)室内定位系列(五)——目标跟踪(卡尔曼滤波)室内定位系列(六)——目标跟踪(粒子滤波)
- 【目标跟踪】相机运动补偿
读书猿
目标跟踪自动驾驶目标检测
文章目录一、前言二、简介三、改进思路3.1、状态定义3.2、相机运动补偿3.3、iou和ReID融合3.4、改进总结四、相机运动补偿一、前言目前MOT(MultipleObjectTracking)最有效的方法仍然是Tracking-by-detection。今天给大家分享一篇论文BoT-SORT。论文地址,论文声称很牛*,各种屠榜,今天我们就来一探究竟。主要是分享论文提出的改进点以及分享在自己的
- 计算机视觉中的目标跟踪
小北的北
计算机视觉目标跟踪人工智能机器学习
从保护我们城市的监控系统到自动驾驶车辆在道路上行驶,目标跟踪已经成为计算机视觉中的一项基础技术。本文深入探讨了目标跟踪,探索了其基本原理、多样化的方法以及在现实世界中的应用。什么是目标跟踪?目标跟踪是深度学习在计算机视觉中广泛应用的重要应用之一。它指的是在动态环境中通过分析轨迹自动识别和跟踪物体,一旦初始位置已知。目标跟踪隐式地使用技术来识别和分类帧中的对象,并为每个对象关联一个唯一的标识。通常,
- 计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)
阿利同学
计算机视觉目标检测单目测距目标跟踪姿态识别实力分割摔倒检测
基于YOLOv5的无人机视频检测与计数系统摘要:无人机技术的快速发展和广泛应用给社会带来了巨大的便利,但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控,本文提出了一种基于YOLOv5的无人机视频检测与计数系统。该系统通过使用YOLOv5目标检测算法,能够准确地检测无人机,并实时计数其数量,提供给用户可视化的监控界面。原文链接:https://blog.csdn.net/ALiLiLiY
- 【目标跟踪】3D点云跟踪
读书猿
目标跟踪3d人工智能
文章目录一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance五
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_