SIFT算法【1.2】尺度空间构建之高斯金字塔和高斯差分金字塔的构建(C++)

SIFT算法的第一个部分是尺度空间的构建,需要生成高斯金字塔和高斯差分金字塔,步骤细节和部分数学原理(https://blog.csdn.net/lcj369387335/article/details/18258333)
函数-高斯金字塔和高斯差分金字塔的构建(引自https://download.csdn.net/download/bjaijyj/9533770):

void MySift::BuildGaussianPyramid()
	{
		sigma[0][0] = sqrt(0.5);
		Img1Down[0] = Img1;
		Img2Down[0] = Img2;
		for (int i = 0; i < nOctaves; i++)
		{
			for (int j = 0; j < nlayers; j++)
			{
				sigma[i][j] = sqrt(0.5) * pow(2, (double)j / 5);
			}
		}
		for (int i = 0; i < nOctaves - 1; i++)
		{
			resize(Img1Down[i], Img1Down[i + 1], Size(Img1Down[i].cols / 2, Img1Down[i].rows / 2), 0, 0, INTER_LINEAR);
			resize(Img2Down[i], Img2Down[i + 1], Size(Img2Down[i].cols / 2, Img2Down[i].rows / 2), 0, 0, INTER_LINEAR);
		}
		for (int i = 0; i < nOctaves; i++)
		{
			for (int j = 0; j < nlayers; j++)
			{
				GaussianBlur(Img1Down[i], Img1Gr[i][j], Size(), sigma[i][j], sigma[i][j]);//伴随序号sigma每组每层逐渐增大
				GaussianBlur(Img2Down[i], Img2Gr[i][j], Size(), sigma[i][j], sigma[i][j]);
			}
		}
	}
void MySift::BuildDoG()
	{
		for (int i = 0; i < nOctaves; i++)
		{
			for (int j = 0; j < nlayers - 1; j++)
			{
				subtract(Img1Gr[i][j], Img1Gr[i][j + 1], Img1Sub[i][j]);//, noArray(), CV_16S);
				subtract(Img2Gr[i][j], Img2Gr[i][j + 1], Img2Sub[i][j]);//, noArray(), CV_16S);
			}
		}
	}

函数-显示高斯金字塔的构建结果(自编):

void MySift::ShowPyramid()
	{
		Rect PyramidROI[12][12];
		int basecols=400;                                            //0层的图像宽度
		int baserows = round(400 * Img1.rows / Img1.cols);           //0层的图像高度
		int w=0,h=0,x=0,y=0;
		Mat currentimg;
		Mat showimg(basecols * 3, basecols * 6, Img1Gr[0][0].type());
		for (int i = 0; i < nOctaves; i++)
		{
			for (int j = 0; j < nlayers; j++)
			{
				w = basecols / pow(2, i);							 //当前金字塔层图像的宽度
				h = baserows / pow(2, i);							 //当前金字塔层图像的高度
				x = w*j;                                             //当前金字塔层图像的左上角角点横坐标
				PyramidROI[i][j] = Rect(x, y, w, h);
			}
			y = y + h;                                               //当前金字塔层图像的左上角角点纵坐标
		}
		for (int i = 0; i < nOctaves; i++)
		{
			for (int j = 0; j < nlayers; j++)
			{
				resize(Img1Gr[i][j], currentimg, Size(PyramidROI[i][j].width, PyramidROI[i][j].height), 0, 0, INTER_LINEAR);
				Rect roi_rect= PyramidROI[i][j];                     //当前图像在画布上的区域
				currentimg.copyTo(showimg(roi_rect));				 //将当前金字塔层图像粘贴到画布上
			}
		}	
		namedWindow("Gaussian Pyramid", WINDOW_AUTOSIZE);
		imshow("Gaussian Pyramid", showimg);
		waitKey(0);
		destroyWindow("Gaussian Pyramid");
	}

显示出的结果如下:

下一步是尺度空间极值点的检测。

你可能感兴趣的:(OpenCV)