- 用java实现word(docx)转换为pdf格式文档(简单版)
xiaoxiaobaozhu
javawordpdf
导入依赖com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3代码//word文档替换成pdf文档privatestaticvoidreplaceWordToPdf(StringwordPath,StringpdfPath){FileinputWord=newFil
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 海思Hi3516CV610 -----芯片说明
菩提树下的凡夫
嵌入式Linux系统开发c++c语言
Hi3516CV610这颗超高清智慧视觉SoC芯片是由海思技术有限公司推出的,其首发量产的时间是在2024年4。标志着海思正式回归安防市场,并在IPCSoC市场中展开竞争。关键特性●4K@20,6M@30分辨率●双目实时接入,支撑枪球一体机等双目机型●1T算力NPU,Transformer特性加速,大模型端侧部署●SVAC3.0编码标准,压缩率提升20%●智能编码2.0,像素升级,存储不加量,4M
- 上下文扩展技术-详细解释Longformer和BigBird的主要创新;详细说明bert原理,并说一说他的上下文限制是怎么来的
AI生成曾小健
人工智能
答案LongformerLongformer是为有效处理长文本序列而设计的Transformer模型,它通过结合滑动窗口注意力机制和扩张注意力模式来捕捉局部和远距离的上下文信息,并通过全局注意力来捕捉整个文档的广泛背景和联系1.Keyinnovations:滑动窗口注意力Longformer使用滑动窗口方法处理本地上下文信息1.扩张注意力模式扩张注意力模式能够捕捉到远处的上下文信息,这对于处理冗长
- GDAL库简介及函数说明
海绵波波107
Python#Python的遥感应用python
目录简介常用函数说明打开和读取影像gdal.Open()dataset.RasterXSizedataset.GetGeoTransform()dataset.GetProjection()dataset.GetRasterBand()dataset.ReadAsArray()写入和输出影像gdal.GetDriverByName()driver.Create()out_dataset.SetGe
- 视觉中的transformer:ViT
ch隔壁老张
深度学习笔记transformer深度学习计算机视觉
《》摘要transformer已经是NLP的标准。但是在cv领域用的很少,视觉里一般是和cnn一起用或者把某些conv替换成transformer(整体还是CNN)本篇文章证明纯的transformer直接在图片分类上也做得很好:在大量数据集上进行预训练的前提上,迁移到小数据集(作者说ImageNet是小数据集-_-)上也很好。Intro启发现在NLP里的transformer都是在大量数据集上进
- ViT和Transformer
Landon9
transformer深度学习人工智能
AttentionIsAllYouNeedVit在图像领域直接使用transformer,如果将2d图像直接转为一维向量,会面临参数两过大的问题。后来会思考在卷积之后再使用transformer,例如resNet50模型中,最后一层仅为14×14大小的矩阵。而本文是直接采用transformer模型,只需要对图片做一下预处理。ViT是将图像分为多个16×16的patch一张图像可以被分成多个小的图
- 详细说说VIT架构和Transformer架构的异同
AI生成曾小健
大模型LLM面试指南多模态MLLM大模型面试指南架构transformer深度学习
GPT-4oVisionTransformer(ViT)和Transformer架构之间的关系非常紧密,因为ViT是直接将Transformer应用到视觉任务中的一种方法。不过,由于图像数据与自然语言数据的特性不同,ViT在实现上对标准Transformer架构做了一些调整。以下是ViT和Transformer架构的异同点详细分析:1.Transformer架构的回顾Transformer是一种用
- 从VGG到Transformer:深度神经网络层级演进对模型性能的深度解析与技术实践指南
燃灯工作室
Aitransformerdnn深度学习
一、技术原理(数学公式+示意图)1.层深与模型容量关系数学表达:根据UniversalApproximationTheorem,深度网络可表达复杂函数:f(x)=fL(fL−1(⋯f1(x)))f(x)=f_L(f_{L-1}(\cdotsf_1(x)))f(x)=fL(fL−1(⋯f1(x)))层数L增加时,函数空间指数级扩大梯度传播挑战:链式法则导致梯度消失/爆炸∂L∂W(1)=∏k=2L∂f
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- 真正通俗易懂的Langchain入门学习(五)
caridle
智能体langchain学习
四、项目实战:从玩具到工具的蜕变项目1:智能客服助手(1-2天)场景需求:用户咨询产品信息→自动查询数据库处理退换货请求→生成工单并邮件通知多轮对话→记住用户历史订单技术栈:产品咨询售后服务用户提问意图识别Chain类型判断数据库查询Agent工单生成Chain组织回复回复美化Transform分步实现:搭建基础问答链fromlangchain.chainsimportRetrievalQA#连接
- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- Pytorch实现一个简单DeepSeek中的MLA多头潜在注意力架构
DukeYong
DeepSeek
首先,MLA是什么?可能是指Multi-HeadLocalAttention,即多头局部注意力,这种机制通常用于减少计算量,特别是在处理长序列时,每个头只关注局部区域。比如每个token只注意其周围的一定窗口内的其他token,而不是全局。这可能与传统的Transformer中的滑动窗口或局部注意力类似。接下来,我需要考虑如何将局部注意力与多头机制结合。每个注意力头可能有不同的局部窗口,或者共享相
- uniapp语音时的动态音波的实现
雾眠气泡水@
uni-app
一、实现效果该文做出来的效果:图片中的音波是动态的二、实现代码将它写为一个组件,方便之后用。命名为“audioWave.vue”.audio-wave{position:absolute;left:0;top:50%;transform:translateY(-50%);width:100%;height:40rpx;display:flex;align-items:center;justify-
- 值得收藏!十大中国流行的AI大模型企业及平台汇总
deepseek大模型
人工智能AIGCchatgpt面试产品经理
在当今这个信息化迅速发展的时代,人工智能技术已经成为推动社会进步的重要力量。特别是在我国,AI大模型技术的发展速度令人瞩目,各种平台纷纷涌现,表现出强大的技术实力和广泛的应用前景。本文将为您介绍当前目前我国十个流行的AI大模型企业及各自平台(根据用户访问流量及行业反馈情况),下面一起来看看吧!1.百度-文心一言百度在大模型开发上持续采用创新算法和结构,如Transformer,以优化模型性能和学习
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- 使用 HuggingFace 库进行本地嵌入向量生成
qq_37836323
python人工智能开发语言
在当今的AI和机器学习应用中,嵌入向量(embeddings)已成为不可或缺的一部分。嵌入向量能够将文本等高维数据转换为低维稠密向量,从而便于计算和分析。在本文中,我们将介绍如何使用HuggingFace库在本地生成嵌入向量,并演示相关代码。环境准备首先,我们需要安装一些必要的依赖库。可以通过以下命令进行安装:#安装必要的库!pipinstallsentence-transformers!pipi
- Flux如何工作?这款新图像生成AI可与Midjourney一较高下
硅基创想家
AI-人工智能与大模型人工智能midjourneyFlux大模型人工智能生成图片
Flux是什么?Flux是黑森林实验室(BlackForestLabs)开发的一款新型人工智能图像生成模型。它代表了人工智能生成艺术领域的重大进展,采用了一种“混合架构”,将transformer和diffusion技术相结合,参数规模达120亿。该模型在图像生成方面具备顶尖性能,在精准遵循提示词、视觉质量、图像细节和输出多样性等方面表现卓越。谁创造了Flux?该模型由黑森林实验室推出。这是一家新
- transformer
我爱派生
深度学习transformer深度学习人工智能
导语:2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer模型,彻底改变了自然语言处理(NLP)领域的格局。Transformer以其独特的结构和强大的性能,迅速成为NLP领域的霸主,并逐渐向其他人工智能领域渗透。本文将带你深入了解Transformer的原理、优势以及应用,探讨其对人工智能发展的深远影响。一、从RNN到Transforme
- 【python 机器学习】sklearn转换器与预估器
人才程序员
杂谈python机器学习sklearn人工智能目标检测深度学习神经网络
文章目录sklearn转换器与预估器1.什么是转换器(Transformer)?通俗介绍:学术解释:2.什么是预估器(Estimator)?通俗介绍:学术解释:3.转换器与预估器的共同点4.转换器与预估器的区别5.使用`sklearn`中的转换器与预估器5.1示例:数据标准化(转换器)5.2示例:模型训练与预测(预估器)6.使用`Pipeline`结合转换器与预估器7.总结sklearn转换器与预
- 【独家首发】蜣螂算法DBO优化Transformer-BiLSTM负荷数据回归预测【含Matlab源码 6568期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 最近社区热议的issue #8542,被疯狂+1的需求急需你的加入!
数据库
最近社区Github最火的issue#8542"添加Python脚本工具进行Transform"——这个被疯狂+1的需求值得被更多大神知道!现在正是参与贡献的最佳时机,你的代码可能就出现在下个正式版本中!issue链接:https://github.com/apache/seatunnel/issues/8542本Issue由社区PMC@liugddx提出,目前处于讨论阶段,想参与的请下滑查看详情
- getUserMedia 获取相机信息
js获取相机信息,并输出到video,同时绘制到canvas上,功能实现如下:Demobody{margin:0;}.container{height:150px;background:#f4f4f4;}input{margin:20px;display:inline-block;}video{position:fixed;top:30%;left:50%;transform:translate(
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的